Suppr超能文献

用于下一代储能设备的钒基MXenes材料。

Vanadium MXenes materials for next-generation energy storage devices.

作者信息

Sijuade Ayomide Adeola, Eze Vincent Obiozo, Arnett Natalie Y, Okoli Okenwa I

机构信息

High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America.

Herff College of Engineering, University of Memphis, Memphis, TN, 38111, United States of America.

出版信息

Nanotechnology. 2023 Apr 11;34(25). doi: 10.1088/1361-6528/acc539.

Abstract

Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the 'A' layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.

摘要

电池和超级电容器已成为下一代储能技术的有力候选者。新型二维(2D)电极材料的快速发展预示着储能设备的新时代。MXenes是一种新型的层状二维过渡金属碳化物、氮化物或碳氮化物,因其优异的导电性、电化学和亲水性、大表面积以及引人注目的拓扑结构而备受关注。本综述重点介绍了各种制备碳化钒MXenes的合成方法,这些方法使用或不使用氢氟酸、氟化锂和盐酸等蚀刻剂来去除MAX相的“A”层。目的是展示采用毒性较小的蚀刻方法来制备性能与传统方法相当的MXenes。本综述还探讨了插层对MXene层间高间距效应以及MXenes作为超级电容器和电池电极性能的影响。最后,讨论了目前在碳化钒MXenes的合成、可扩展性以及在更多储能设备中的应用方面的知识空白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验