Suppr超能文献

通过生物标志物诊断结核病的机器学习方法——一项系统综述

Machine learning approaches in diagnosing tuberculosis through biomarkers - A systematic review.

作者信息

Balakrishnan Vimala, Kherabi Yousra, Ramanathan Ghayathri, Paul Scott Arjay, Tiong Chiong Kian

机构信息

Faculty of Computer Science and Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.

Department of Infectious Diseases, Hôpital Bichat-Claude Bernard, Assistance Publique Hôpitaux de Paris, Paris, France.

出版信息

Prog Biophys Mol Biol. 2023 May;179:16-25. doi: 10.1016/j.pbiomolbio.2023.03.001. Epub 2023 Mar 16.

Abstract

Biomarker-based tests may facilitate Tuberculosis (TB) diagnosis, accelerate treatment initiation, and thus improve outcomes. This review synthesizes the literature on biomarker-based detection for TB diagnosis using machine learning. The systematic review approach follows the PRISMA guideline. Articles were sought using relevant keywords from Web of Science, PubMed, and Scopus, resulting in 19 eligible studies after a meticulous screening. All the studies were found to have focused on the supervised learning approach, with Support Vector Machine (SVM) and Random Forest emerging as the top two algorithms, with the highest accuracy, sensitivity and specificity reported to be 97.0%, 99.2%, and 98.0%, respectively. Further, protein-based biomarkers were widely explored, followed by gene-based such as RNA sequence and, Spoligotypes. Publicly available datasets were observed to be popularly used by the studies reviewed whilst studies targeting specific cohorts such as HIV patients or children gathering their own data from healthcare facilities, leading to smaller datasets. Of these, most studies used the leave one out cross validation technique to mitigate overfitting. The review shows that machine learning is increasingly assessed in research to improve TB diagnosis through biomarkers, as promising results were shown in terms of model's detection performance. This provides insights on the possible application of machine learning approaches to diagnose TB using biomarkers as opposed to the traditional methods that can be time consuming. Low-middle income settings, where access to basic biomarkers could be provided as compared to sputum-based tests that are not always available, could be a major application of such models.

摘要

基于生物标志物的检测可能有助于结核病(TB)的诊断,加速治疗的开始,从而改善治疗结果。本综述综合了有关使用机器学习进行基于生物标志物的结核病诊断检测的文献。系统综述方法遵循PRISMA指南。使用来自科学网、PubMed和Scopus的相关关键词搜索文章,经过细致筛选后得到19项符合条件的研究。所有研究均聚焦于监督学习方法,支持向量机(SVM)和随机森林成为前两种算法,报告的最高准确率、灵敏度和特异性分别为97.0%、99.2%和98.0%。此外,基于蛋白质的生物标志物得到了广泛探索,其次是基于基因的生物标志物,如RNA序列和寡核苷酸分型。在所审查的研究中,公开可用的数据集被普遍使用,而针对特定队列(如艾滋病毒患者或儿童)的研究则从医疗机构收集自己的数据,导致数据集较小。其中,大多数研究使用留一法交叉验证技术来减轻过拟合。该综述表明,机器学习在研究中越来越多地被评估,以通过生物标志物改善结核病诊断,因为在模型的检测性能方面显示出了有前景的结果。这为使用生物标志物而非可能耗时的传统方法应用机器学习方法诊断结核病提供了见解。与并非始终可用的痰检相比,可以提供基本生物标志物的低收入和中等收入地区可能是此类模型的主要应用领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验