Center for Neural Science, New York University, New York, New York 10003.
Neuroscience Institute, Department of Neuroscience and Physiology, New York University, New York, New York 10016.
J Neurosci. 2023 May 3;43(18):3202-3218. doi: 10.1523/JNEUROSCI.1876-22.2023. Epub 2023 Mar 17.
Neocortical layer 1 (L1) consists of the distal dendrites of pyramidal cells and GABAergic interneurons (INs) and receives extensive long-range "top-down" projections, but L1 INs remain poorly understood. In this work, we systematically examined the distinct dominant electrophysiological features for four unique IN subtypes in L1 that were previously identified from mice of either gender: Canopy cells show an irregular firing pattern near rheobase; neurogliaform cells are late-spiking, and their firing rate accelerates during current injections; cells with strong expression of the α7 nicotinic receptor (α7 cells), display onset (rebound) bursting; vasoactive intestinal peptide (VIP) expressing cells exhibit high input resistance, strong adaptation, and irregular firing. Computational modeling revealed that these diverse neurophysiological features could be explained by an extended exponential-integrate-and-fire neuron model with varying contributions of a slowly inactivating K channel, a T-type Ca channel, and a spike-triggered Ca-dependent K channel. In particular, we show that irregular firing results from square-wave bursting through a fast-slow analysis. Furthermore, we demonstrate that irregular firing is frequently observed in VIP cells because of the interaction between strong adaptation and a slowly inactivating K channel. At last, we reveal that the VIP and α7 cell models resonant with alpha/theta band input through a dynamic gain analysis. In the neocortex, ∼25% of neurons are interneurons. Interestingly, only somas of interneurons reside within layer 1 (L1) of the neocortex, but not of excitatory pyramidal cells. L1 interneurons are diverse and believed to be important in the cortical-cortex interactions, especially top-down signaling in the cortical hierarchy. However, the electrophysiological features of L1 interneurons are poorly understood. Here, we systematically studied the electrophysiological features within each L1 interneuron subtype. Furthermore, we build computational models for each subtype and study the mechanisms behind these features. These electrophysiological features within each subtype should be incorporated to elucidate how different L1 interneuron subtypes contribute to communication between cortexes.
新皮层第 1 层(L1)由锥体神经元和 GABA 能中间神经元(INs)的远端树突组成,接收广泛的长程“自上而下”投射,但 L1 INs 的研究仍很不充分。在这项工作中,我们系统地检查了先前从雌雄小鼠中鉴定出的 4 种独特 L1 IN 亚型的独特主要电生理特征:树冠细胞在基准电流附近显示不规则的放电模式;神经胶质细胞呈迟发性,其放电率在电流注入时加速;强表达α7 烟碱型受体(α7 细胞)的细胞表现出起始(反弹)爆发;血管活性肠肽(VIP)表达细胞表现出高输入电阻、强适应和不规则放电。计算建模表明,这些不同的神经生理特征可以通过具有不同贡献的扩展指数积分和放电神经元模型来解释,其中包括缓慢失活的 K 通道、T 型 Ca 通道和尖峰触发的 Ca 依赖性 K 通道。特别是,我们表明不规则放电是通过快速-缓慢分析的方波爆发产生的。此外,我们证明由于强适应和缓慢失活的 K 通道之间的相互作用,不规则放电经常在 VIP 细胞中观察到。最后,我们通过动态增益分析揭示了 VIP 和α7 细胞模型通过α/θ 带输入共振。在大脑皮层中,约 25%的神经元是中间神经元。有趣的是,只有中间神经元的胞体位于新皮层的第 1 层(L1)内,而兴奋性锥体神经元的胞体则没有。L1 中间神经元多种多样,被认为在皮层-皮层相互作用中很重要,尤其是在皮层层次结构中的自上而下信号传递中。然而,L1 中间神经元的电生理特征仍不清楚。在这里,我们系统地研究了每个 L1 中间神经元亚型的电生理特征。此外,我们为每个亚型建立了计算模型,并研究了这些特征背后的机制。这些亚型内的每个电生理特征都应该被整合,以阐明不同的 L1 中间神经元亚型如何有助于皮层之间的通信。