文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光刺激人多能干细胞来源的胰岛类器官的胰岛素分泌。

Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.

机构信息

Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.

Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea.

出版信息

Mol Ther. 2023 May 3;31(5):1480-1495. doi: 10.1016/j.ymthe.2023.03.013. Epub 2023 Mar 16.


DOI:10.1016/j.ymthe.2023.03.013
PMID:36932674
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10188912/
Abstract

Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca concentration ([Ca]) transients from the resulting homozygous monSTIM1-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1-PIOs displayed reversible and reproducible [Ca] transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.

摘要

光遗传学技术允许对细胞活动进行非侵入性、时空和可逆的调节。在这里,我们使用单 STIM1(怪物-opto-基质相互作用分子 1),一种超灵敏的 OptoSTIM1 变体,报告了一种用于人多能干细胞(hPSC)衍生的胰岛类器官中胰岛素分泌的新型光遗传学调节系统。通过 CRISPR-Cas9 介导的基因组编辑,将 monSTIM1 转基因整合到人胚胎干细胞(hESC)的 AAVS1 基因座中。我们不仅能够从产生的纯合子 monSTIM1-hESC 中引发光诱导的细胞内 Ca 浓度 ([Ca]) 瞬变,而且还能够成功地将其分化为胰岛类器官(PIOs)。在光刺激下,这些 monSTIM1-PIO 中的β细胞显示出可逆和可重复的 [Ca] 瞬变动力学。此外,它们对光激发有反应时会分泌人胰岛素。从新生儿糖尿病(ND)患者来源的诱导多能干细胞(iPSC)产生的 monSTIM1-PIO 中也观察到了光响应性胰岛素分泌。在 LED 照射下,monSTIM1-PIO 移植的糖尿病小鼠产生了人 C 肽。总之,我们使用 hPSC 开发了一种用于光遗传学控制胰岛素分泌的细胞模型,具有改善高血糖症的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d7d/10188912/4ff6a2aadb84/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d7d/10188912/4ff6a2aadb84/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d7d/10188912/4ff6a2aadb84/fx1.jpg

相似文献

[1]
Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells.

Mol Ther. 2023-5-3

[2]
Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo.

Sci Rep. 2016-10-12

[3]
Selection for CD26 and CD49A Cells From Pluripotent Stem Cells-Derived Islet-Like Clusters Improves Therapeutic Activity in Diabetic Mice.

Front Endocrinol (Lausanne). 2021

[4]
Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells.

J Biol Chem. 2017-8-25

[5]
Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model.

Stem Cells Dev. 2012-6-1

[6]
Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells.

J Diabetes. 2017-2

[7]
Pancreatic insulin-producing cells differentiated from human embryonic stem cells correct hyperglycemia in SCID/NOD mice, an animal model of diabetes.

PLoS One. 2014-7-10

[8]
Oxygenated Scaffolds for Pancreatic Endocrine Differentiation from Induced Pluripotent Stem Cells.

Adv Healthc Mater. 2024-1

[9]
Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds.

Stem Cells Dev. 2017-3-15

[10]
Long-Term Expansion of Pancreatic Islet Organoids from Resident Procr Progenitors.

Cell. 2020-3-19

引用本文的文献

[1]
On-demand treatment of metabolic diseases by a synthetic drug-inducible exocytosis system.

Nat Commun. 2025-3-22

[2]
Bioengineering and omics approaches for Type 1 diabetes practical research: advancements and constraints.

Ann Med. 2025-12

[3]
Advances in human pluripotent stem cell reporter systems.

iScience. 2024-8-30

[4]
Optogenetics in Pancreatic Islets: Actuators and Effects.

Diabetes. 2024-10-1

[5]
Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound.

Genes Dis. 2023-9-15

[6]
Application and challenge of pancreatic organoids in therapeutic research.

Front Pharmacol. 2024-5-24

[7]
Optogenetic therapeutic strategies for diabetes mellitus.

J Diabetes. 2024-6

[8]
Light-Mediated Enhancement of Glucose-Stimulated Insulin Release of Optogenetically Engineered Human Pancreatic Beta-Cells.

ACS Synth Biol. 2024-3-15

[9]
Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.

J Mol Biol. 2024-2-1

[10]
Rapid optogenetic clustering of a cytoplasmic BcLOV4 variant.

bioRxiv. 2023-9-17

本文引用的文献

[1]
Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes.

Transpl Int. 2022

[2]
Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges.

Stem Cell Res Ther. 2022-7-15

[3]
Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes.

Front Endocrinol (Lausanne). 2021

[4]
Far-red light-activated human islet-like designer cells enable sustained fine-tuned secretion of insulin for glucose control.

Mol Ther. 2022-1-5

[5]
Strategies for durable β cell replacement in type 1 diabetes.

Science. 2021-7-30

[6]
Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes.

Small. 2021-9

[7]
Human Pluripotent Stem Cells to Model Islet Defects in Diabetes.

Front Endocrinol (Lausanne). 2021

[8]
Optogenetic stimulation of cholinergic fibers for the modulation of insulin and glycemia.

Sci Rep. 2021-2-11

[9]
A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

Nat Commun. 2021-1-27

[10]
Recent progress in pancreatic islet cell therapy.

Inflamm Regen. 2021-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索