Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
J Control Release. 2023 May;357:175-184. doi: 10.1016/j.jconrel.2023.03.027. Epub 2023 Mar 31.
Glucan particles (GPs) are hollow, porous microspheres derived from Saccharomyces cerevisiae (Baker's yeast). The hollow cavity of GPs allows for efficient encapsulation of different types of macromolecules and small molecules. The β-1,3-D-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing β-glucan receptors and uptake of particles containing encapsulated proteins elicit protective innate and acquired immune responses against a wide range of pathogens. A limitation of the previously reported GP protein delivery technology is limited protection from thermal degradation. Here we present results of an efficient protein encapsulation approach using tetraethylorthosilicate (TEOS) to lock protein payloads in a thermostable silica cage formed in situ inside the hollow cavity of GPs. The methods for this improved, efficient GP protein ensilication approach were developed and optimized using bovine serum albumin (BSA) as model protein. The improved method involved controlling the rate of TEOS polymerization, such that the soluble TEOS-protein solution was able to be absorbed into the GP hollow cavity before the protein-silica cage polymerized and becomes too large to transverse across the GP wall. This improved method provided for >90% GP encapsulation efficiency, increased thermal stabilization of GP ensilicated BSA, and was shown to be applicable for encapsulation of proteins of different molecular weights and isoelectric points. To demonstrate the retention of bioactivity of this improved method of protein delivery, we evaluated the in vivo immunogenicity of two GP ensilicated vaccine formulations using (1) ovalbumin as a model antigen and (2) a protective antigenic protein from the fungal pathogen Cryptococcus neoformans. The results show that the GP ensilicated vaccines have a similar high immunogenicity as our current GP protein/hydrocolloid vaccines, as evidenced by robust antigen-specific IgG responses to the GP ensilicated OVA vaccine. Further, a GP ensilicated C. neoformans Cda2 vaccine protected vaccinated mice from a lethal pulmonary infection of C. neoformans.
葡聚糖颗粒(GPs)是从酿酒酵母(面包酵母)中提取的中空多孔微球。GPs 的中空腔允许有效封装不同类型的大分子和小分子。β-1,3-D-葡聚糖外壳提供了与表达β-葡聚糖受体的吞噬细胞的受体介导摄取,并且摄取含有包封蛋白的颗粒会引发针对广泛病原体的保护性先天和获得性免疫反应。以前报道的 GP 蛋白递药技术的一个局限性是对热降解的保护有限。在这里,我们展示了一种使用正硅酸乙酯(TEOS)将蛋白有效封装在 GP 中空腔内原位形成的热稳定硅笼中的高效蛋白封装方法的结果。使用牛血清白蛋白(BSA)作为模型蛋白开发和优化了这种改进的、高效的 GP 蛋白包封方法。该改进的方法涉及控制 TEOS 聚合的速率,使得可溶性 TEOS-蛋白溶液能够在蛋白-硅笼聚合并变得太大而无法穿过 GP 壁之前被吸收到 GP 中空腔中。这种改进的方法提供了 >90%的 GP 封装效率,增加了 GP 包封的 BSA 的热稳定性,并显示适用于封装不同分子量和等电点的蛋白。为了证明这种改进的蛋白递药方法的生物活性保持,我们使用(1)卵清蛋白作为模型抗原和(2)来自真菌病原体新生隐球菌的保护性抗原蛋白,评估了两种 GP 包封疫苗制剂的体内免疫原性。结果表明,GP 包封疫苗与我们目前的 GP 蛋白/水凝胶疫苗具有相似的高免疫原性,这一点从 GP 包封 OVA 疫苗的强抗原特异性 IgG 反应中得到证明。此外,GP 包封的新生隐球菌 Cda2 疫苗保护接种小鼠免受新生隐球菌的致死性肺部感染。