Suppr超能文献

青年精神病高危人群自杀意念的语言相关因素。

Linguistic correlates of suicidal ideation in youth at clinical high-risk for psychosis.

机构信息

Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.

Department of Psychology, Emory University, 201 Dowman Dr, Atlanta, GA 3032, USA.

出版信息

Schizophr Res. 2023 Sep;259:20-27. doi: 10.1016/j.schres.2023.03.014. Epub 2023 Mar 17.

Abstract

Suicidal ideation (SI) is prevalent among individuals at clinical high-risk for psychosis (CHR). Natural language processing (NLP) provides an efficient method to identify linguistic markers of suicidality. Prior work has demonstrated that an increased use of "I", as well as words with semantic similarity to "anger", "sadness", "stress" and "lonely", are correlated with SI in other cohorts. The current project analyzes data collected in an SI supplement to an NIH R01 study of thought disorder and social cognition in CHR. This study is the first to use NLP analyses of spoken language to identify linguistic correlates of recent suicidal ideation among CHR individuals. The sample included 43 CHR individuals, 10 with recent suicidal ideation and 33 without, as measured by the Columbia-Suicide Severity Rating Scale, as well as 14 healthy volunteers without SI. NLP methods include part-of-speech (POS) tagging, a GoEmotions-trained BERT Model, and Zero-Shot Learning. As hypothesized, individuals at CHR for psychosis who endorsed recent SI utilized more words with semantic similarity to "anger" compared to those who did not. Words with semantic similarity to "stress", "loneliness", and "sadness" were not significantly different between the two CHR groups. Contrary to our hypotheses, CHR individuals with recent SI did not use the word "I" more than those without recent SI. As anger is not characteristic of CHR, findings have implications for the consideration of subthreshold anger-related sentiment in suicidal risk assessment. As NLP is scalable, findings suggest that language markers may improve suicide screening and prediction in this population.

摘要

自杀意念(SI)在处于精神病高危状态的个体中较为普遍(CHR)。自然语言处理(NLP)提供了一种识别自杀倾向语言标记的有效方法。先前的研究表明,“我”的使用增加,以及与“愤怒”、“悲伤”、“压力”和“孤独”语义相似的词与其他队列中的 SI 相关。目前的项目分析了 NIH R01 研究中关于 CHR 思维障碍和社会认知的 SI 补充数据。这项研究是首次使用 NLP 分析口语来识别 CHR 个体近期自杀意念的语言相关性。该样本包括 43 名 CHR 个体,10 名有近期自杀意念,33 名无近期自杀意念,由哥伦比亚自杀严重程度评定量表测量,以及 14 名无 SI 的健康志愿者。NLP 方法包括词性(POS)标记、经过 GoEmotions 训练的 BERT 模型和零样本学习。正如假设的那样,精神病高危状态且最近有自杀意念的个体比没有自杀意念的个体使用更多与“愤怒”语义相似的词。与“压力”、“孤独”和“悲伤”语义相似的词在这两个 CHR 群体之间没有显著差异。与我们的假设相反,最近有 SI 的 CHR 个体并不比没有最近 SI 的个体更多地使用“我”这个词。由于愤怒不是 CHR 的特征,研究结果对考虑阈下与愤怒相关的情绪在自杀风险评估中的作用具有启示意义。由于 NLP 是可扩展的,因此研究结果表明,语言标记可能会改善该人群的自杀筛查和预测。

相似文献

8
Automated linguistic analysis in youth at clinical high risk for psychosis.针对临床高危精神病青年的自动语言分析。
Schizophr Res. 2024 Dec;274:121-128. doi: 10.1016/j.schres.2024.09.009. Epub 2024 Sep 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验