Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
Schizophr Res. 2023 Sep;259:80-87. doi: 10.1016/j.schres.2022.12.048. Epub 2023 Jan 31.
Psychotic symptoms are typically measured using clinical ratings, but more objective and sensitive metrics are needed. Hence, we will assess thought disorder using the Research Domain Criteria (RDoC) heuristic for language production, and its recommended paradigm of "linguistic corpus-based analyses of language output". Positive thought disorder (e.g., tangentiality and derailment) can be assessed using word-embedding approaches that assess semantic coherence, whereas negative thought disorder (e.g., concreteness, poverty of speech) can be assessed using part-of-speech (POS) tagging to assess syntactic complexity. We aim to establish convergent validity of automated linguistic metrics with clinical ratings, assess normative demographic variance, determine cognitive and functional correlates, and replicate their predictive power for psychosis transition among at-risk youths.
This study will assess language production in 450 English-speaking individuals in Australia and Canada, who have recent onset psychosis, are at clinical high risk (CHR) for psychosis, or who are healthy volunteers, all well-characterized for cognition, function and symptoms. Speech will be elicited using open-ended interviews. Audio files will be transcribed and preprocessed for automated natural language processing (NLP) analyses of coherence and complexity. Data analyses include canonical correlation, multivariate linear regression with regularization, and machine-learning classification of group status and psychosis outcome.
This prospective study aims to characterize language disturbance across stages of psychosis using computational approaches, including psychometric properties, normative variance and clinical correlates, important for biomarker development. SPEAK will create a large archive of language data available to other investigators, a rich resource for the field.
精神病症状通常采用临床评分进行测量,但需要更客观和敏感的指标。因此,我们将使用研究领域标准(RDoC)语言产生的启发式方法评估思维障碍,并采用其推荐的“语言输出的基于语料库的语言分析”范式。可以使用评估语义连贯性的词嵌入方法评估阳性思维障碍(例如离题和脱轨),而可以使用词性(POS)标记评估句法复杂性来评估阴性思维障碍(例如具体性,言语贫乏)。我们的目标是建立自动化语言指标与临床评分的一致性,评估规范的人口统计学差异,确定认知和功能相关性,并复制它们在有风险的年轻人中预测精神病转变的预测能力。
这项研究将评估 450 名讲英语的个体的语言产生能力,这些个体来自澳大利亚和加拿大,他们具有近期精神病发作,处于精神病的临床高风险(CHR),或为健康志愿者,均具有认知,功能和症状的特征。使用开放式访谈引出语音。将音频文件转录并进行预处理,以进行连贯性和复杂性的自动化自然语言处理(NLP)分析。数据分析包括典型相关,正则化多元线性回归以及用于群组状态和精神病结果的机器学习分类。
这项前瞻性研究旨在使用计算方法描述精神病各个阶段的语言障碍,包括心理计量特性,规范差异和临床相关性,这对于生物标志物的开发很重要。SPEAK 将创建一个语言数据的大型档案,可供其他研究人员使用,这是该领域的宝贵资源。