Medical Sciences Postgraduate Program, Federal University of Ceará, Rua Silva Jatahy 1000 ap 600, Fortaleza, Ceará, 60165-070, Brazil.
Hospital Universitário Walter Cantídio, Federal University of Ceará, Fortaleza, Ceará, Brazil.
Sci Rep. 2023 Mar 18;13(1):4506. doi: 10.1038/s41598-023-31707-4.
Predicting risk factors for death in leptospirosis is challenging, and identifying high-risk patients is crucial as it might expedite the start of life-saving supportive care. Admission data of 295 leptospirosis patients were enrolled, and a machine-learning approach was used to fit models in a derivation cohort. The comparison of accuracy metrics was performed with two previous models-SPIRO score and quick SOFA score. A Lasso regression analysis was the selected model, demonstrating the best accuracy to predict mortality in leptospirosis [area under the curve (AUC-ROC) = 0.776]. A score-based prediction was carried out with the coefficients of this model and named LeptoScore. Then, to simplify the predictive tool, a new score was built by attributing points to the predictors with importance values higher than 1. The simplified score, named QuickLepto, has five variables (age > 40 years; lethargy; pulmonary symptom; mean arterial pressure < 80 mmHg and hematocrit < 30%) and good predictive accuracy (AUC-ROC = 0.788). LeptoScore and QuickLepto had better accuracy to predict mortality in patients with leptospirosis when compared to SPIRO score (AUC-ROC = 0.500) and quick SOFA score (AUC-ROC = 0.782). The main result is a new scoring system, the QuickLepto, that is a simple and useful tool to predict death in leptospirosis patients at hospital admission.
预测钩端螺旋体病死亡的危险因素具有挑战性,识别高危患者至关重要,因为这可能会加快挽救生命的支持性治疗的开始。共纳入 295 例钩端螺旋体病患者的入院数据,并在推导队列中使用机器学习方法拟合模型。通过与两个以前的模型(SPIRO 评分和快速 SOFA 评分)比较准确性指标来进行比较。选择了 Lasso 回归分析作为模型,该模型在预测钩端螺旋体病死亡率方面表现出最佳的准确性[曲线下面积(AUC-ROC)= 0.776]。使用该模型的系数进行基于评分的预测,并将其命名为 LeptoScore。然后,为了简化预测工具,通过将重要性值高于 1 的预测因子赋予分数来构建新的评分。简化的评分,命名为 QuickLepto,具有五个变量(年龄> 40 岁;昏睡;肺部症状;平均动脉压< 80mmHg 和血细胞比容< 30%)和良好的预测准确性(AUC-ROC = 0.788)。与 SPIRO 评分(AUC-ROC = 0.500)和快速 SOFA 评分(AUC-ROC = 0.782)相比,LeptoScore 和 QuickLepto 能够更准确地预测钩端螺旋体病患者的死亡率。主要结果是一种新的评分系统 QuickLepto,它是一种简单而有用的工具,可以预测住院患者的钩端螺旋体病死亡。