King's College, London, UK.
University College London, London, UK.
J Cardiovasc Electrophysiol. 2023 May;34(5):1164-1174. doi: 10.1111/jce.15890. Epub 2023 Apr 27.
Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation.
Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification.
Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764).
Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.
左心房(LA)的结构变化适度预测了接受导管消融治疗心房颤动(AF)的患者的结局。机器学习(ML)是一种很有前途的方法,可以通过整合来自心脏计算机断层扫描(CT)扫描的心房几何形状和患者特定的临床数据,为导管消融后的 AF 管理策略和改善预测风险模型进行个性化处理。我们假设基于患者特定数据的 ML 方法可以识别 AF 消融的应答者。
回顾性分析了连续接受 AF 消融治疗且具有术前 CT 扫描、人口统计学和 1 年随访数据的患者。模型的输入是来自左心房分割的 CT 衍生形态特征(包括 LA 的形状、体积、LA 附件和肺静脉口)以及直接从原始 CT 图像学习的深度特征,以及临床数据。这些在一个框架中智能融合,以学习它们各自的重要性并产生最佳分类。
共分析了 321 例患者(64.2±10.6 岁,69%为男性,40%为阵发性 AF)。经过 10 倍嵌套交叉验证后,与仅基于临床数据(AUC 0.626)、形态学(AUC 0.659)或影像学数据(AUC 0.764)训练的模型相比,该模型能够智能融合并学习临床、形态和影像学数据的适当权重(AUC 0.821)。
我们的 ML 方法提供了一种端到端的自动化技术,使用来自 CT 图像、LA 衍生结构特性的深度学习,并结合合并的 ML 框架中的临床数据,来预测 AF 消融的结果。这有助于为 AF 的侵入性管理中的患者选择制定个性化策略。