Suppr超能文献

杂化表面电势的调控通过增强 RGDF 肽结合和细胞机械感知促进成骨。

Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing.

机构信息

NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

出版信息

Adv Mater. 2023 Jun;35(24):e2209769. doi: 10.1002/adma.202209769. Epub 2023 Apr 29.

Abstract

The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.

摘要

细胞外基质 (ECM) 的拓扑结构、刚度和架构的异质性是调节细胞行为和成骨的关键因素。然而,微纳尺度上 ECM 电势能的异质性对成骨的影响仍有待阐明。在这里,通过将铁电 BaTiO 纳米纤维 (BTNF) 掺入聚偏二氟乙烯-三氟乙烯 (P(VDF-TrFE)) 基质中,基于相场和第一性原理模拟,建立了表面电势的不均匀分布。通过优化 BTNF 填充剂的纵横比,可以实现 BTNF/P(VDF-TrFE) 纳米复合膜上表面电势的各向异性分布,这是由于 BTNF 填充剂的自发极化较强。这些结果表明,不均匀的表面电势分布导致纤连蛋白 (FN) 聚集的网格图案,这增加了 FN-III7-10(FN 片段)的焦点灵活性和锚定点,如分子动力学模拟所预测的。此外,整合素簇集、焦点黏附形成、细胞铺展和黏附依次增强。肌动蛋白纤维的牵引力增加通过促进 YAP/Runx2 的核转位来放大机械转导,从而增强体外成骨和体内骨再生。这项工作为微纳尺度上表面电势异质性对成骨的生物学影响提供了基本的见解,并为优化用于组织再生治疗的电活性生物材料的性能提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验