Dai Xiaohan, Heng Boon Chin, Bai Yunyang, You Fuping, Sun Xiaowen, Li Yiping, Tang Zhangui, Xu Mingming, Zhang Xuehui, Deng Xuliang
Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China.
Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.
Bioact Mater. 2020 Dec 31;6(7):2029-2038. doi: 10.1016/j.bioactmat.2020.12.020. eCollection 2021 Jul.
Macrophage-mediated inflammation compromises bone repair in diabetic patients. Electrical signaling cues are known to regulate macrophage functions. However, the biological effects of electrical microenvironment from charged biomaterials on the immune response for regulating osteogenesis under diabetic conditions remain to be elucidated. Herein the endogeneous electrical microenvironment of native bone tissue was recapitulated by fabricating a ferroelectric BaTiO/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membrane. , the polarized BaTiO/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membranes inhibited high glucose-induced M1-type inflammation, by effecting changes in cell morphology, M1 marker expression and pro-inflammatory cytokine secretion in macrophages. This led to enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). , the biomimetic electrical microenvironment recapitulated by the polarized nanocomposite membranes switched macrophage phenotype from the pro-inflammatory (M1) into the pro-healing (M2) phenotype, which in turn enhanced bone regeneration in rats with type 2 diabetes mellitus. Mechanistic studies revealed that the biomimetic electrical microenvironment attenuated pro-inflammatory M1 macrophage polarization under hyperglycemic conditions by suppressing expression of AKT2 and IRF5 within the PI3K-AKT signaling pathway, thereby inducing favorable osteo-immunomodulatory effects. Our study thus provides fundamental insights into the biological effects of restoring the electrical microenvironment conducive for osteogenesis under DM conditions, and offers an effective strategy to design functionalized biomaterials for bone regeneration therapy in diabetic patients.
巨噬细胞介导的炎症会损害糖尿病患者的骨修复。已知电信号线索可调节巨噬细胞功能。然而,带电生物材料的电微环境对糖尿病条件下调节骨生成的免疫反应的生物学效应仍有待阐明。在此,通过制备铁电钛酸钡/聚(偏二氟乙烯-三氟乙烯)(BTO/P(VDF-TrFE))纳米复合膜来模拟天然骨组织的内源性电微环境。极化的BTO/P(VDF-TrFE)纳米复合膜通过影响巨噬细胞的细胞形态、M1标志物表达和促炎细胞因子分泌,抑制了高糖诱导的M1型炎症。这导致人骨髓间充质干细胞(BM-MSCs)的成骨分化增强。极化纳米复合膜模拟的仿生电微环境将巨噬细胞表型从促炎(M1)转变为促愈合(M2)表型,进而促进了2型糖尿病大鼠的骨再生。机制研究表明,仿生电微环境通过抑制PI3K-AKT信号通路中AKT2和IRF5的表达,减弱了高血糖条件下促炎M1巨噬细胞的极化,从而诱导了有利的骨免疫调节作用。因此,我们的研究为在糖尿病条件下恢复有利于骨生成的电微环境的生物学效应提供了基本见解,并为设计用于糖尿病患者骨再生治疗的功能化生物材料提供了有效策略。