Suppr超能文献

多神经风险评分可捕捉认知的广泛分布连接模式。

Polyneuro risk scores capture widely distributed connectivity patterns of cognition.

机构信息

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States.

Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States; Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55414, United States.

出版信息

Dev Cogn Neurosci. 2023 Apr;60:101231. doi: 10.1016/j.dcn.2023.101231. Epub 2023 Mar 15.

Abstract

Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.

摘要

静息态功能连接(RSFC)是一种强大的工具,可以用于描述大脑变化,但它还不能可靠地预测更高阶的认知。这可能归因于这些大脑-行为关系的效应量较小,当使用典型的样本量(N∼25)时,会导致研究结果的效能不足和不稳定。受基因组学技术的启发,我们实施了多神经风险评分(PNRS)框架 - 将多元技术应用于 RSFC 数据,并在独立样本中进行验证。我们利用青少年大脑认知发展®队列分为两个数据集,探索该框架在 3 个认知评分(一般能力、执行功能、学习和记忆)中可靠捕捉大脑-行为关系的能力。在第一个数据集中评估每个连接的权重和重要性,并为第二个数据集中的每个参与者计算一个 PNRS。结果支持 PNRS 框架作为一种合适的方法来检查对行为有贡献的连接分布,解释方差从 1.0%到 21.4%不等。对于评估的结果,该框架揭示了具有预测性的连接是全球分布的,而不是局部的。更大的样本量可能有必要系统地确定对复杂结果有贡献的特定连接。PNRS 框架可以在临床上用于识别神经发育障碍的神经学上不同的亚型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba43/10031023/6e3d6c686c3d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验