University of Rostock, Landscape Ecology, Justus-von-Liebig-Weg 6, 18059, Germany.
University of Rostock, Grassland and Fodder Sciences, Justus-von-Liebig-Weg 6, 18059, Germany.
Sci Total Environ. 2023 Jun 15;877:162943. doi: 10.1016/j.scitotenv.2023.162943. Epub 2023 Mar 20.
Growing Sphagnum on rewetted bogs (=Sphagnum paludiculture) is an alternative to drainage-based land use because it retains its value as productive land while mitigating greenhouse gas (GHG) emissions. However, studies on GHG exchange covering the full production system and cycle are missing. Here, we combined data of the establishment phase with newly recorded data of a 7-year old Sphagnum paludiculture site in Germany including partial Sphagnum harvest. GHGs were measured with closed chambers at all elements of the system (production fields, ditches, causeways). Over the full production cycle, the production fields were GHG sinks with -3.2 ± 4.2 t ha a (in CO-eq), while ditches represented sources emitting 13.8 ± 11.5 t ha a. New measurements on the causeway indicated that it was a stronger GHG source with 29.3 ± 9.8 t ha a than previously assumed from literature values. Corrected for the area share of its elements and including the partial Sphagnum harvest (in dry mass) of ~13.8 ± 0.6 t ha (=average 7-year CO emissions of 3.3 ± 0.1 t ha a), the site was a GHG source of 10.7 ± 4.6 t ha a, thus reducing emissions by ~20 t ha a compared to the German emission factor for grassland on drained organic soils. Per ton harvested dry biomass, the paludiculture site emitted 9.9 ± 4.6 t of CO-eq. The causeways were the major contributor to the warming, calling for reducing causeway area in Sphagnum paludicultures. Future 'best-practice' could realistically comprise areal shares of 80 % production fields, 5 % ditches, 15 % causeways and a full Sphagnum harvest with the uppermost 5 cm remaining on site for recovery. In this scenario the site would emit CO-eq emissions of 4.3 ± 1.9 t ha a or 0.9 ± 2.1 t per ton harvested dry mass.
在重新湿地化的沼泽地上种植泥炭藓(=泥炭藓养殖)是一种替代排水土地利用的方法,因为它在保持土地生产力的同时,减少温室气体(GHG)排放。然而,目前还缺乏涵盖整个生产系统和周期的 GHG 交换研究。在这里,我们结合了德国一个 7 年生泥炭藓养殖场地建立阶段的数据以及新记录的数据,包括部分泥炭藓收获。使用封闭室在系统的所有元素(生产场地、沟渠、堤道)上测量 GHG。在整个生产周期内,生产场地是 GHG 汇,吸收了-3.2±4.2 t ha a(以 CO 当量计),而沟渠则是排放 13.8±11.5 t ha a 的源。对堤道的新测量表明,它是一个更强的 GHG 源,排放量为 29.3±9.8 t ha a,而此前根据文献值假设的为 13.8±9.8 t ha a。校正其元素面积份额,并包括部分泥炭藓收获(以干质量计)约 13.8±0.6 t ha(平均 7 年 CO 排放量为 3.3±0.1 t ha a),该场地是 GHG 的源,排放量为 10.7±4.6 t ha a,因此与德国排水有机土壤上草地的排放因子相比,减少了约 20 t ha a 的排放。每收获一吨干生物量,泥炭藓养殖场地排放 9.9±4.6 t 的 CO 当量。堤道是导致变暖的主要因素,因此需要减少泥炭藓养殖中的堤道面积。未来的“最佳实践”实际上可以包括 80%的生产场地、5%的沟渠、15%的堤道以及全部的泥炭藓收获,最上面的 5cm 留在现场用于恢复。在这种情况下,该场地将排放 CO 当量为 4.3±1.9 t ha a 或每收获一吨干质量排放 0.9±2.1 t 的 GHG。