Suppr超能文献

基于数据驱动的流固耦合问题运动学一致模型降阶:应用于斯托克斯流中的可变形微胶囊

Data-driven kinematics-consistent model order reduction of fluid-structure interaction problems: application to deformable microcapsules in a Stokes flow.

作者信息

Dupont Claire, De Vuyst Florian, Salsac Anne-Virginie

机构信息

Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne - CNRS, 60203 Compiègne, France.

Laboratory of Applied Mathematics of Compiègne, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne, France.

出版信息

J Fluid Mech. 2023 Jan 12;955. doi: 10.1017/jfm.2022.1005. eCollection 2023 Jan 25.

Abstract

In this paper, we present a generic approach of a dynamical data-driven model order reduction technique for three-dimensional fluid-structure interaction problems. A low-order continuous linear differential system is identified from snapshot solutions of a high-fidelity solver. The reduced order model (ROM) uses different ingredients like proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and Tikhonov-based robust identification techniques. An interpolation method is used to predict the capsule dynamics for any value of the governing non-dimensional parameters that are not in the training database. Then a dynamical system is built from the predicted solution. Numerical evidence shows the ability of the reduced model to predict the time-evolution of the capsule deformation from its initial state, whatever the parameter values. Accuracy and stability properties of the resulting low-order dynamical system are analysed numerically. The numerical experiments show a very good agreement, measured in terms of modified Hausdorff distance between capsule solutions of the full-order and low-order models both in the case of confined and unconfined flows. This work is a first milestone to move towards real time simulation of fluid-structure problems, which can be extended to non-linear low-order systems to account for strong material and flow non-linearities. It is a valuable innovation tool for rapid design and for the development of innovative devices.

摘要

在本文中,我们提出了一种用于三维流固耦合问题的动态数据驱动模型降阶技术的通用方法。从高保真求解器的快照解中识别出一个低阶连续线性微分系统。降阶模型(ROM)使用了诸如本征正交分解(POD)、动态模态分解(DMD)和基于蒂霍诺夫的鲁棒识别技术等不同要素。采用一种插值方法来预测控制无量纲参数的任何值(这些值不在训练数据库中)下的胶囊动力学。然后根据预测解构建一个动态系统。数值证据表明,无论参数值如何,降阶模型都能够从初始状态预测胶囊变形的时间演化。对所得低阶动态系统的准确性和稳定性进行了数值分析。数值实验表明,在受限流和非受限流情况下,以全阶模型和低阶模型的胶囊解之间的修正豪斯多夫距离来衡量,两者具有非常好的一致性。这项工作是迈向流固问题实时模拟的第一个里程碑,可扩展到非线性低阶系统以考虑强材料和流动非线性。它是用于快速设计和创新设备开发的有价值的创新工具。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验