Suppr超能文献

用于高清地图创建的交通信号灯检测与跟踪

Traffic lights detection and tracking for HD map creation.

作者信息

Mentasti Simone, Simsek Yusuf Can, Matteucci Matteo

机构信息

Politecnico di Milano, DEIB, Milan, Italy.

出版信息

Front Robot AI. 2023 Mar 3;10:1065394. doi: 10.3389/frobt.2023.1065394. eCollection 2023.

Abstract

HD-maps are one of the core components of the self-driving pipeline. Despite the effort of many companies to develop a completely independent vehicle, many state-of-the-art solutions rely on high-definition maps of the environment for localization and navigation. Nevertheless, the creation process of such maps can be complex and error-prone or expensive if performed ad-hoc surveys. For this reason, robust automated solutions are required. One fundamental component of an high-definition map is traffic lights. In particular, traffic light detection has been a well-known problem in the autonomous driving field. Still, the focus has always been on the light state, not the features (i.e., shape, orientation, pictogram). This work presents a pipeline for lights HD-map creation designed to provide accurate georeferenced position and description of all traffic lights seen by a camera mounted on a surveying vehicle. Our algorithm considers consecutive detection of the same light and uses Kalman filtering techniques to provide each target's smoother and more precise position. Our pipeline has been validated for the detection and mapping task using the state-of-the-art dataset DriveU Traffic Light Dataset. The results show that our model is robust even with noisy GPS data. Moreover, for the detection task, we highlight how our model can correctly identify even far-away targets which are not labeled in the original dataset.

摘要

高清地图是自动驾驶流程的核心组件之一。尽管许多公司努力开发完全独立的车辆,但许多最先进的解决方案仍依赖于环境的高清地图进行定位和导航。然而,如果进行临时调查,此类地图的创建过程可能会很复杂、容易出错或成本高昂。因此,需要强大的自动化解决方案。高清地图的一个基本组件是交通信号灯。特别是,交通信号灯检测在自动驾驶领域一直是一个众所周知的问题。不过,人们一直关注的是灯的状态,而不是其特征(即形状、方向、象形图)。这项工作提出了一种用于创建交通信号灯高清地图的流程,旨在提供安装在测量车辆上的摄像头所看到的所有交通信号灯的精确地理参考位置和描述。我们的算法考虑对同一信号灯的连续检测,并使用卡尔曼滤波技术为每个目标提供更平滑、更精确的位置。我们的流程已使用最先进的数据集DriveU交通信号灯数据集对检测和映射任务进行了验证。结果表明,即使在GPS数据有噪声的情况下,我们的模型也很稳健。此外,对于检测任务,我们强调了我们的模型如何能够正确识别原始数据集中未标记的甚至远处的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bd7/10020491/362959b82cca/frobt-10-1065394-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验