Le Nhat Trang Nguyen, Thi Nguyet Nga Dao, Tufa Lemma Teshome, Tran Van Tan, Hung Thuan-Tran, Ngoc Phan Vu, Pham Tuyet Nhung, Hoang Van-Tuan, Le Anh-Tuan
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Department of Chemical Engineering and Applied Chemistry, Chungnam National University Daejeon 34134 Republic of Korea.
RSC Adv. 2023 Mar 15;13(13):8753-8764. doi: 10.1039/d3ra00399j. eCollection 2023 Mar 14.
In this study, bio-Ag/ZnO NCs were synthesized a microwave-assisted biogenic electrochemical method using mangosteen () peel extract as a biogenic reducing agent for the reduction of Zn and Ag ions to form hybrid nanoparticles. The as-synthesized NC samples at three different microwave irradiation temperatures ( , , ) exhibited a remarkable difference in size and crystallinity that directly impacted their electrocatalytic behaviors as well as electrochemical sensing performance. The obtained results indicate that the sample showed the highest electrochemical performance among the investigated samples, which is attributed to the improved particle size distribution and crystal microstructure that enhanced charge transfer and the electroactive surface area. Under the optimal conditions for carbaryl pesticide detection, the proposed nanosensor exhibited a high electrochemical sensitivity of up to 0.303 μA μM cm with a detection limit of LOD ∼0.27 μM for carbaryl pesticide detection in a linear range of 0.25-100 μM. Overall, the present work suggests that bio-Ag/ZnO NCs are a potential candidate for the development of a high-performance electrochemical-based non-enzymatic nanosensor with rapid monitoring, cost-effectiveness, and eco-friendly to detect carbaryl pesticide residues in agricultural products.
在本研究中,采用微波辅助生物电化学方法,以山竹果皮提取物作为生物还原剂,将锌离子和银离子还原,合成了生物银/氧化锌纳米复合材料(NCs),以形成混合纳米颗粒。在三种不同微波辐照温度(、、)下合成的NC样品在尺寸和结晶度上表现出显著差异,这直接影响了它们的电催化行为以及电化学传感性能。所得结果表明,在所研究的样品中,样品表现出最高的电化学性能,这归因于改善的粒径分布和晶体微观结构,增强了电荷转移和电活性表面积。在西维因农药检测的最佳条件下,所提出的纳米传感器表现出高达0.303 μA μM cm的高电化学灵敏度,在0.25 - 100 μM的线性范围内,西维因农药检测的检测限约为0.27 μM。总体而言,目前的工作表明,生物银/氧化锌纳米复合材料是开发一种基于电化学的高性能非酶纳米传感器的潜在候选材料,该传感器具有快速监测、成本效益高和生态友好的特点,可用于检测农产品中的西维因农药残留。