Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630006, India.
J Environ Manage. 2020 May 15;262:110282. doi: 10.1016/j.jenvman.2020.110282. Epub 2020 Feb 19.
A facile and eco-friendly green synthesis of silver-copper@zinc oxide (Ag-Cu@ZnO) nanocomposite using Acacia caesia flower extract and their application on catalytic reduction of toxic compounds and electrochemical sensing of nitrite ions are reported. The phytochemicals present in the extract were utilized for the Ag-Cu metal nanoparticles synthesis and also enhanced the binding capability between ZnO and Ag-Cu NPs. The synthesized nanocomposites were characterized by XRD, UV-Vis spectroscopy, Raman spectra, FTIR, SEM, TEM, EDX, XPS and ICP-AES for the formation of Ag-Cu NPs on ZnO. The Ag-Cu@ZnO nanocomposite showed better catalytic efficiency as compared to monometallic nanoparticles for 4-nitrophenol to 4-aminophenol conversion and Rhodamine B and Congo red dye degradation with 99% efficiency up to four cycles. The Ag-Cu@ZnO modified GC electrode showed enhanced catalytic activity towards nitrite oxidation, and it exhibited better performance compared to the other nanocomposites. An appreciable detection limit (17 μM) was achieved with excellent sensitivity for nitrite detection. The sensor was highly selective even in a many-fold higher concentration of co-existing interfering compounds. The good catalytic and electrochemical sensing is mainly ascribed due to the synergistic effect of Ag-Cu on the ZnO in the Ag-Cu@ZnO nanocomposite materials.
采用金合欢花提取物,简便、环保地合成了银-铜@氧化锌(Ag-Cu@ZnO)纳米复合材料,并将其应用于有毒化合物的催化还原和亚硝酸盐离子的电化学传感。提取物中的植物化学物质不仅用于 Ag-Cu 金属纳米粒子的合成,而且增强了 ZnO 和 Ag-Cu NPs 之间的结合能力。通过 XRD、UV-Vis 光谱、拉曼光谱、FTIR、SEM、TEM、EDX、XPS 和 ICP-AES 对合成的纳米复合材料进行了表征,证明了 Ag-Cu NPs 在 ZnO 上的形成。与单金属纳米粒子相比,Ag-Cu@ZnO 纳米复合材料在 4-硝基苯酚到 4-氨基酚的转化以及罗丹明 B 和刚果红染料的降解方面表现出更好的催化效率,最高可达四个循环,效率达到 99%。Ag-Cu@ZnO 修饰的 GC 电极对亚硝酸盐氧化表现出增强的催化活性,与其他纳米复合材料相比,其性能更佳。该传感器对亚硝酸盐的检测具有较高的灵敏度,检测限低至 17 μM。即使在存在多种高浓度共存干扰化合物的情况下,传感器也具有很高的选择性。Ag-Cu@ZnO 纳米复合材料中 Ag-Cu 对 ZnO 的协同效应是其具有良好的催化和电化学传感性能的主要原因。