Chan Yu Bin, Aminuzzaman Mohammod, Tey Lai-Hock, Win Yip Foo, Watanabe Akira, Djearamame Sinouvassane, Akhtaruzzaman Md
Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar Campus, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia.
Centre for Photonics and Advanced Materials Research (CPAMR), Universiti Tunku Abdul Rahman (UTAR), Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Kajang 43000, Malaysia.
Materials (Basel). 2023 Aug 2;16(15):5421. doi: 10.3390/ma16155421.
Compared to conventional metal oxide nanoparticles, metal oxide nanocomposites have demonstrated significantly enhanced efficiency in various applications. In this study, we aimed to synthesize zinc oxide-copper oxide nanocomposites (ZnO-CuO NCs) using a green synthesis approach. The synthesis involved mixing 4 g of Zn(NO)·6HO with different concentrations of mangosteen () leaf extract (0.02, 0.03, 0.04 and 0.05 g/mL) and 2 or 4 g of Cu(NO)·3HO, followed by calcination at temperatures of 300, 400 and 500 °C. The synthesized ZnO-CuO NCs were characterized using various techniques, including a UV-Visible spectrometer (UV-Vis), photoluminescence (PL) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD) analysis and Field Emission Scanning Electron Microscope (FE-SEM) with an Energy Dispersive X-ray (EDX) analyzer. Based on the results of this study, the optical, structural and morphological properties of ZnO-CuO NCs were found to be influenced by the concentration of the mangosteen leaf extract, the calcination temperature and the amount of Cu(NO)·3HO used. Among the tested conditions, ZnO-CuO NCs derived from 0.05 g/mL of mangosteen leaf extract, 4 g of Zn(NO)·6HO and 2 g of Cu(NO)·3HO, calcinated at 500 °C exhibited the following characteristics: the lowest energy bandgap (2.57 eV), well-defined Zn-O and Cu-O bands, the smallest particle size of 39.10 nm with highest surface area-to-volume ratio and crystalline size of 18.17 nm. In conclusion, we successfully synthesized ZnO-CuO NCs using a green synthesis approach with mangosteen leaf extract. The properties of the nanocomposites were significantly influenced by the concentration of the plant extract, the calcination temperature and the amount of precursor used. These findings provide valuable insights for researchers seeking innovative methods for the production and utilization of nanocomposite materials.
与传统金属氧化物纳米颗粒相比,金属氧化物纳米复合材料在各种应用中已展现出显著提高的效率。在本研究中,我们旨在采用绿色合成方法合成氧化锌 - 氧化铜纳米复合材料(ZnO - CuO NCs)。合成过程包括将4 g Zn(NO₃)₂·6H₂O与不同浓度的山竹()叶提取物(0.02、0.03、0.04和0.05 g/mL)以及2 g或4 g Cu(NO₃)₂·3H₂O混合,随后在300、400和500 °C的温度下进行煅烧。使用多种技术对合成的ZnO - CuO NCs进行了表征,包括紫外 - 可见光谱仪(UV - Vis)、光致发光(PL)光谱、傅里叶变换红外(FTIR)光谱、X射线粉末衍射(XRD)分析以及配备能量色散X射线(EDX)分析仪的场发射扫描电子显微镜(FE - SEM)。基于本研究结果,发现ZnO - CuO NCs的光学、结构和形态性质受山竹叶提取物浓度、煅烧温度以及所使用的Cu(NO₃)₂·3H₂O量的影响。在测试条件中,源自0.05 g/mL山竹叶提取物、4 g Zn(NO₃)₂·6H₂O和2 g Cu(NO₃)₂·3H₂O且在500 °C煅烧的ZnO - CuO NCs表现出以下特性:最低的能带隙(2.57 eV)、明确的Zn - O和Cu - O带、最小的粒径为39.10 nm且具有最高的表面积与体积比以及18.17 nm的晶体尺寸。总之,我们使用山竹叶提取物通过绿色合成方法成功合成了ZnO - CuO NCs。纳米复合材料的性质受到植物提取物浓度、煅烧温度和前体用量的显著影响。这些发现为寻求纳米复合材料生产和利用创新方法的研究人员提供了有价值的见解。
原文中“mangosteen ()”括号处内容缺失,翻译时保留了原文格式。