Suppr超能文献

一种基于深度学习的用于放射治疗中锥形束计算机断层扫描的解剖区域标记工具的可行性。

Feasibility of a deep-learning based anatomical region labeling tool for Cone-Beam Computed Tomography scans in radiotherapy.

作者信息

Luximon Dishane C, Neylon John, Lamb James M

机构信息

Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

出版信息

Phys Imaging Radiat Oncol. 2023 Mar 5;25:100427. doi: 10.1016/j.phro.2023.100427. eCollection 2023 Jan.

Abstract

BACKGROUND AND PURPOSE

Currently, there is no robust indicator within the Cone-Beam Computed Tomography (CBCT) DICOM headers as to which anatomical region is present on the scan. This can be a predicament to CBCT-based algorithms trained on specific body regions, such as auto-segmentation and radiomics tools used in the radiotherapy workflow. We propose an anatomical region labeling (ARL) algorithm to classify CBCT scans into four distinct regions: head & neck, thoracic-abdominal, pelvis, and extremity.

MATERIALS AND METHODS

Algorithm training and testing was performed on 3,802 CBCT scans from 596 patients treated at our radiotherapy center. The ARL model, which consists of a convolutional neural network, makes use of a single CBCT coronal slice to output a probability of occurrence for each of the four classes. ARL was evaluated on the test dataset composed of 1,090 scans and compared to a support vector machine (SVM) model. ARL was also used to label CBCT treatment scans for 22 consecutive days as part of a proof-of-concept implementation. A validation study was performed on the first 100 unique patient scans to evaluate the functionality of the tool in the clinical setting.

RESULTS

ARL achieved an overall accuracy of 99.2% on the test dataset, outperforming the SVM (91.5% accuracy). Our validation study has shown strong agreement between the human annotations and ARL predictions, with accuracies of 99.0% for all four regions.

CONCLUSION

The high classification accuracy demonstrated by ARL suggests that it may be employed as a pre-processing step for site-specific, CBCT-based radiotherapy tools.

摘要

背景与目的

目前,在锥束计算机断层扫描(CBCT)的DICOM头文件中,没有可靠的指标来表明扫描上存在哪个解剖区域。这对于在特定身体区域训练的基于CBCT的算法(如放射治疗工作流程中使用的自动分割和放射组学工具)来说可能是一个难题。我们提出一种解剖区域标记(ARL)算法,将CBCT扫描分类为四个不同区域:头颈部、胸腹、骨盆和四肢。

材料与方法

在我们放疗中心接受治疗的596例患者的3802次CBCT扫描上进行算法训练和测试。由卷积神经网络组成的ARL模型利用单个CBCT冠状切片输出四个类别中每一个类别的出现概率。在由1090次扫描组成的测试数据集上对ARL进行评估,并与支持向量机(SVM)模型进行比较。作为概念验证实施的一部分,ARL还连续22天用于标记CBCT治疗扫描。对前100例独特患者扫描进行了验证研究,以评估该工具在临床环境中的功能。

结果

ARL在测试数据集上的总体准确率达到99.2%,优于SVM(准确率91.5%)。我们的验证研究表明,人工标注与ARL预测之间具有高度一致性,所有四个区域的准确率均为99.0%。

结论

ARL显示出的高分类准确率表明,它可作为基于CBCT的特定部位放疗工具的预处理步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825c/10020677/80830d076e1d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验