Cepitis Ritums, Kongi Nadezda, Rossmeisl Jan, Ivaništšev Vladislav
Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia.
Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
ACS Energy Lett. 2023 Feb 7;8(3):1330-1335. doi: 10.1021/acsenergylett.3c00068. eCollection 2023 Mar 10.
Improved oxygen electrocatalysis is crucial for the ever-growing energy demand. Metal-nitrogen-carbon (M-N-C) materials are promising candidates for catalysts. Their activity is tunable via varying electronic and geometric properties, such as porosity. Because of the difficulty in modeling porosity, M-N-Cs with variable surface curvature remained largely unexplored. In this work, we developed a realistic in-pore dual-atom site M-N-C model and applied density functional theory to investigate the surface curvature effect on oxygen reduction and evolution reactions. We show that surface curving tailors both scaling relations and energy barriers. Thus, we predict that adjusting the surface curvature can improve the catalytic activity toward mono- and bifunctional oxygen electrocatalysis.
对于不断增长的能源需求而言,改进氧电催化至关重要。金属-氮-碳(M-N-C)材料是很有前景的催化剂候选物。其活性可通过改变电子和几何性质(如孔隙率)来调节。由于孔隙率建模困难,具有可变表面曲率的M-N-C材料在很大程度上仍未得到探索。在这项工作中,我们开发了一个逼真的孔内双原子位点M-N-C模型,并应用密度泛函理论来研究表面曲率对氧还原和析氧反应的影响。我们表明,表面弯曲既能调整比例关系,也能调整能垒。因此,我们预测调整表面曲率可以提高对单功能和双功能氧电催化的催化活性。