Suppr超能文献

利用金属有机框架规避氧电化学中的标度关系

Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal-Organic Frameworks.

作者信息

Sours Tyler, Patel Anjli, Nørskov Jens, Siahrostami Samira, Kulkarni Ambarish

机构信息

Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States.

SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

J Phys Chem Lett. 2020 Dec 3;11(23):10029-10036. doi: 10.1021/acs.jpclett.0c02889. Epub 2020 Nov 12.

Abstract

It has been well-established that unfavorable scaling relationships between *OOH, *OH, and *O are responsible for the high overpotentials associated with oxygen electrochemistry. A number of strategies have been proposed for breaking these linear constraints for traditional electrocatalysts (e.g., metals, alloys, metal-doped carbons); such approaches have not yet been validated experimentally for heterogeneous catalysts. Development of a new class of catalysts capable of circumventing such scaling relations remains an ongoing challenge in the field. In this work, we use density functional theory (DFT) calculations to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials platform for rationally designing the 3-D active site environments for oxygen reduction reaction (ORR). Specifically, we show that the *OOH binding energy and the theoretical limiting potential can be optimized by appropriately tuning the transition metal active site, the oxophilic spectator, and the MOF topology. Our calculations predict theoretical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this work aims to establish bimetallic porphyrin-based MOFs as a viable materials platform for future experimental and theoretical ORR studies.

摘要

已经充分证实,OOH、OH和O之间不利的标度关系是与氧电化学相关的高过电位的原因。已经提出了许多策略来打破传统电催化剂(如金属、合金、金属掺杂碳)的这些线性限制;这些方法尚未在非均相催化剂上得到实验验证。开发一类能够规避这种标度关系的新型催化剂仍然是该领域的一个持续挑战。在这项工作中,我们使用密度泛函理论(DFT)计算来证明双金属卟啉基金属有机框架(PMOFs)是合理设计用于氧还原反应(ORR)的三维活性位点环境的理想材料平台。具体而言,我们表明,通过适当调整过渡金属活性位点、亲氧旁观者和MOF拓扑结构,可以优化OOH结合能和理论极限电位。我们的计算预测Fe/Cr-PMOF-Al的理论极限电位高达1.07 V,超过了4e ORR的Pt/C基准。更广泛地说,通过突出它们的独特特性,这项工作旨在将双金属卟啉基MOFs确立为未来ORR实验和理论研究的可行材料平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验