Suppr超能文献

使用无监督机器学习揭示进行性核上性麻痹中萎缩的时空模式。

Uncovering spatiotemporal patterns of atrophy in progressive supranuclear palsy using unsupervised machine learning.

作者信息

Scotton William J, Shand Cameron, Todd Emily, Bocchetta Martina, Cash David M, VandeVrede Lawren, Heuer Hilary, Young Alexandra L, Oxtoby Neil, Alexander Daniel C, Rowe James B, Morris Huw R, Boxer Adam L, Rohrer Jonathan D, Wijeratne Peter A

机构信息

Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.

Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1V 6LJ, UK.

出版信息

Brain Commun. 2023 Mar 2;5(2):fcad048. doi: 10.1093/braincomms/fcad048. eCollection 2023.

Abstract

To better understand the pathological and phenotypic heterogeneity of progressive supranuclear palsy and the links between the two, we applied a novel unsupervised machine learning algorithm (Subtype and Stage Inference) to the largest MRI data set to date of people with clinically diagnosed progressive supranuclear palsy (including progressive supranuclear palsy-Richardson and variant progressive supranuclear palsy syndromes). Our cohort is comprised of 426 progressive supranuclear palsy cases, of which 367 had at least one follow-up scan, and 290 controls. Of the progressive supranuclear palsy cases, 357 were clinically diagnosed with progressive supranuclear palsy-Richardson, 52 with a progressive supranuclear palsy-cortical variant (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech/language, or progressive supranuclear palsy-corticobasal), and 17 with a progressive supranuclear palsy-subcortical variant (progressive supranuclear palsy-parkinsonism or progressive supranuclear palsy-progressive gait freezing). Subtype and Stage Inference was applied to volumetric MRI features extracted from baseline structural (T1-weighted) MRI scans and then used to subtype and stage follow-up scans. The subtypes and stages at follow-up were used to validate the longitudinal consistency of subtype and stage assignments. We further compared the clinical phenotypes of each subtype to gain insight into the relationship between progressive supranuclear palsy pathology, atrophy patterns, and clinical presentation. The data supported two subtypes, each with a distinct progression of atrophy: a 'subcortical' subtype, in which early atrophy was most prominent in the brainstem, ventral diencephalon, superior cerebellar peduncles, and the dentate nucleus, and a 'cortical' subtype, in which there was early atrophy in the frontal lobes and the insula alongside brainstem atrophy. There was a strong association between clinical diagnosis and the Subtype and Stage Inference subtype with 82% of progressive supranuclear palsy-subcortical cases and 81% of progressive supranuclear palsy-Richardson cases assigned to the subcortical subtype and 82% of progressive supranuclear palsy-cortical cases assigned to the cortical subtype. The increasing stage was associated with worsening clinical scores, whilst the 'subcortical' subtype was associated with worse clinical severity scores compared to the 'cortical subtype' (progressive supranuclear palsy rating scale and Unified Parkinson's Disease Rating Scale). Validation experiments showed that subtype assignment was longitudinally stable (95% of scans were assigned to the same subtype at follow-up) and individual staging was longitudinally consistent with 90% remaining at the same stage or progressing to a later stage at follow-up. In summary, we applied Subtype and Stage Inference to structural MRI data and empirically identified two distinct subtypes of spatiotemporal atrophy in progressive supranuclear palsy. These image-based subtypes were differentially enriched for progressive supranuclear palsy clinical syndromes and showed different clinical characteristics. Being able to accurately subtype and stage progressive supranuclear palsy patients at baseline has important implications for screening patients on entry to clinical trials, as well as tracking disease progression.

摘要

为了更好地理解进行性核上性麻痹的病理和表型异质性以及两者之间的联系,我们将一种新型无监督机器学习算法(亚型和阶段推断)应用于迄今为止最大的临床诊断为进行性核上性麻痹患者(包括进行性核上性麻痹-理查森型和变异型进行性核上性麻痹综合征)的MRI数据集。我们的队列包括426例进行性核上性麻痹病例,其中367例至少有一次随访扫描,以及290例对照。在进行性核上性麻痹病例中,357例临床诊断为进行性核上性麻痹-理查森型,52例为进行性核上性麻痹-皮质变异型(进行性核上性麻痹-额叶型、进行性核上性麻痹-言语/语言型或进行性核上性麻痹-皮质基底节型),17例为进行性核上性麻痹-皮质下变异型(进行性核上性麻痹-帕金森型或进行性核上性麻痹-进行性步态冻结型)。亚型和阶段推断应用于从基线结构(T1加权)MRI扫描中提取的体积MRI特征,然后用于对随访扫描进行亚型划分和阶段判定。随访时的亚型和阶段用于验证亚型和阶段判定的纵向一致性。我们进一步比较了各亚型的临床表型,以深入了解进行性核上性麻痹病理、萎缩模式和临床表现之间的关系。数据支持两种亚型,每种亚型具有不同的萎缩进展:一种“皮质下”亚型,其中早期萎缩在脑干、腹侧间脑、上小脑脚和齿状核最为明显;另一种“皮质”亚型,其中额叶和岛叶早期萎缩伴脑干萎缩。临床诊断与亚型和阶段推断亚型之间存在很强的关联,82%的进行性核上性麻痹-皮质下病例和81%的进行性核上性麻痹-理查森型病例被归为皮质下亚型,82%的进行性核上性麻痹-皮质型病例被归为皮质亚型。阶段增加与临床评分恶化相关,而“皮质下”亚型与“皮质”亚型相比临床严重程度评分更差(进行性核上性麻痹评定量表和统一帕金森病评定量表)。验证实验表明,亚型判定在纵向是稳定的(95%的扫描在随访时被归为同一亚型),个体分期在纵向是一致的,90%在随访时保持在同一阶段或进展到下一阶段。总之,我们将亚型和阶段推断应用于结构MRI数据,并通过实证确定了进行性核上性麻痹中两种不同的时空萎缩亚型。这些基于图像的亚型在进行性核上性麻痹临床综合征中差异富集,并表现出不同的临床特征。能够在基线时准确对进行性核上性麻痹患者进行亚型划分和阶段判定,对筛选进入临床试验的患者以及跟踪疾病进展具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33a5/10016410/351a9ff6dadd/fcad048_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验