Suppr超能文献

大规模灭绝事件的可预测性如何?

How predictable are mass extinction events?

作者信息

Foster William J, Allen Bethany J, Kitzmann Niklas H, Münchmeyer Jannes, Rettelbach Tabea, Witts James D, Whittle Rowan J, Larina Ekaterina, Clapham Matthew E, Dunhill Alexander M

机构信息

Institute for Geology, University of Hamburg, Hamburg, Germany.

School of Earth and Environment, University of Leeds, Leeds, UK.

出版信息

R Soc Open Sci. 2023 Mar 15;10(3):221507. doi: 10.1098/rsos.221507. eCollection 2023 Mar.

Abstract

Many modern extinction drivers are shared with past mass extinction events, such as rapid climate warming, habitat loss, pollution and invasive species. This commonality presents a key question: can the extinction risk of species during past mass extinction events inform our predictions for a modern biodiversity crisis? To investigate if it is possible to establish which species were more likely to go extinct during mass extinctions, we applied a functional trait-based model of extinction risk using a machine learning algorithm to datasets of marine fossils for the end-Permian, end-Triassic and end-Cretaceous mass extinctions. Extinction selectivity was inferred across each individual mass extinction event, before testing whether the selectivity patterns obtained could be used to 'predict' the extinction selectivity exhibited during the other mass extinctions. Our analyses show that, despite some similarities in extinction selectivity patterns between ancient crises, the selectivity of mass extinction events is inconsistent, which leads to a poor predictive performance. This lack of predictability is attributed to evolution in marine ecosystems, particularly during the Mesozoic Marine Revolution, associated with shifts in community structure alongside coincident Earth system changes. Our results suggest that past extinctions are unlikely to be informative for predicting extinction risk during a projected mass extinction.

摘要

许多现代物种灭绝的驱动因素与过去的大规模灭绝事件相同,比如气候迅速变暖、栖息地丧失、污染和外来物种入侵。这种共性引出了一个关键问题:过去大规模灭绝事件中物种的灭绝风险能否为我们预测现代生物多样性危机提供参考?为了研究是否有可能确定哪些物种在大规模灭绝期间更有可能灭绝,我们使用机器学习算法,将基于功能性状的灭绝风险模型应用于二叠纪末、三叠纪末和白垩纪末大规模灭绝的海洋化石数据集。在测试所获得的选择性模式是否可用于“预测”其他大规模灭绝期间表现出的灭绝选择性之前,我们推断了每次大规模灭绝事件中的灭绝选择性。我们的分析表明,尽管古代危机之间的灭绝选择性模式存在一些相似之处,但大规模灭绝事件的选择性并不一致,这导致预测性能不佳。这种缺乏可预测性归因于海洋生态系统的演变,特别是在中生代海洋革命期间,这与群落结构的变化以及同时发生的地球系统变化有关。我们的结果表明,过去的灭绝事件不太可能为预测预计的大规模灭绝期间的灭绝风险提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87b/10014245/14e05d550083/rsos221507f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验