Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.
Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
Small. 2023 Jun;19(25):e2207479. doi: 10.1002/smll.202207479. Epub 2023 Mar 20.
Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs' technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro-in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
最近,细胞外囊泡 (EVs) 引起了人们极大的治疗兴趣,尤其是因为它们能够在组织和细胞之间进行靶向运输。然而,EVs 作为治疗剂的技术转化强烈依赖于更复杂模型中更好的生物相容性评估以及基本的体外-体内相关性,以及哺乳动物与细菌囊泡的比较。考虑到这一点,本文介绍了两种新型 EV,一种源自人 B 淋巴细胞,具有低免疫原性,另一种源自非致病性粘细菌 SBSr073。建立了一种大规模的分离方案,以减少塑料废物和培养空间,从而实现可持续的 EV 研究。使用细胞因子释放和内毒素测定法在体外对哺乳动物和细菌 EV 的生物相容性进行了全面评估,并应用了体内斑马鱼幼虫模型。使用复杂的三维人细胞培养模型来了解囊泡在上皮细胞和免疫细胞中的空间分布,并再次使用斑马鱼幼虫来研究体内的生物分布。最后,成功地将氟喹诺酮环丙沙星 (CPX) 加载到囊泡中,并且在斑马鱼幼虫中的毒性比游离 CPX 低。然后对载有囊泡的 CPX 进行了测试,其对目前对现有抗生素表现出越来越强耐药性的致病性志贺菌具有有效作用。