Suppr超能文献

评估将氟喹诺酮类药物加载到外膜囊泡中作为新型抗生素递送平台的各种方法的效率。

Evaluation of the efficiency of various methods to load fluoroquinolones into outer membrane vesicles as a novel antibiotic delivery platform.

作者信息

Wu Meishan, Holgado Lauryn, Harrower Rachael M, Brown Angela C

机构信息

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E. Morton St., Bethlehem, PA, 18015, USA.

Department of Biological Sciences, Lehigh University, 111 Research Dr., Bethlehem, PA, 18015, USA.

出版信息

Biochem Eng J. 2024 Oct;210. doi: 10.1016/j.bej.2024.109418. Epub 2024 Jul 2.

Abstract

The development of novel antibacterial agents that are effective against Gram-negative bacteria is limited primarily by transport issues. This class of bacteria maintains a complex cell envelope consisting of two membrane bilayers, preventing the passage of most antibiotics. These drugs must therefore pass through protein channels called porins; however, many antibiotics are too large to pass through porins, and a common mechanism of acquired resistance is down-regulation of porins. To overcome this transport limitation, we have proposed the use of outer membrane vesicles (OMVs), released by Gram-negative bacteria, which deliver cargo to other bacterial cells in a porin-independent manner. In this work, we systematically studied the ability to load fluoroquinolones into purified OMVs using and passive loading methods, and active loading methods such as electroporation and sonication. We observed limited loading of all of the antibiotics using passive loading techniques; sonication and electroporation significantly increased the loading, with electroporation at low voltages (200 and 400V) resulting in the greatest encapsulation efficiencies. We also demonstrated that imipenem, a carbapenem antibiotic, can be readily loaded into OMVs, and its administration via OMVs increases the effectiveness of the drug against . Our results demonstrate that small molecule antibiotics can be readily incorporated into OMVs to create novel delivery vehicles to improve antibiotic activity.

摘要

新型抗革兰氏阴性菌抗菌剂的开发主要受转运问题的限制。这类细菌具有由两个膜双层组成的复杂细胞包膜,阻止了大多数抗生素的通过。因此,这些药物必须通过称为孔蛋白的蛋白质通道;然而,许多抗生素太大而无法通过孔蛋白,获得性耐药的常见机制是孔蛋白的下调。为了克服这种转运限制,我们提出使用革兰氏阴性菌释放的外膜囊泡(OMV),其以不依赖孔蛋白的方式将货物递送至其他细菌细胞。在这项工作中,我们系统地研究了使用被动加载方法以及电穿孔和超声处理等主动加载方法将氟喹诺酮类药物加载到纯化的OMV中的能力。我们观察到使用被动加载技术时所有抗生素的加载量有限;超声处理和电穿孔显著增加了加载量,低电压(200和400V)电穿孔导致最大的包封效率。我们还证明,碳青霉烯类抗生素亚胺培南可以很容易地加载到OMV中,并且通过OMV给药可提高该药物对……的有效性。我们的结果表明,小分子抗生素可以很容易地掺入OMV中,以创建新型递送载体来提高抗生素活性。

相似文献

3
Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles.
Front Immunol. 2021 Sep 20;12:733064. doi: 10.3389/fimmu.2021.733064. eCollection 2021.
4
Biocompatible bacteria-derived vesicles show inherent antimicrobial activity.
J Control Release. 2018 Nov 28;290:46-55. doi: 10.1016/j.jconrel.2018.09.030. Epub 2018 Oct 5.
5
Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy.
Acta Biomater. 2022 Mar 1;140:102-115. doi: 10.1016/j.actbio.2021.12.005. Epub 2021 Dec 9.
8
Protective role of E. coli outer membrane vesicles against antibiotics.
Microbiol Res. 2015 Dec;181:1-7. doi: 10.1016/j.micres.2015.07.008. Epub 2015 Aug 1.
9
Proteomic Network of Antibiotic-Induced Outer Membrane Vesicles Released by Extensively Drug-Resistant Elizabethkingia anophelis.
Microbiol Spectr. 2022 Aug 31;10(4):e0026222. doi: 10.1128/spectrum.00262-22. Epub 2022 Jul 19.

引用本文的文献

1
Optimization of methods for isolation and purification of outer membrane vesicles (OMVs) from Neisseria lactamica.
Appl Microbiol Biotechnol. 2025 Apr 7;109(1):82. doi: 10.1007/s00253-025-13460-y.

本文引用的文献

1
Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System.
Small. 2023 Jun;19(25):e2207479. doi: 10.1002/smll.202207479. Epub 2023 Mar 20.
2
The Discovery of the Role of Outer Membrane Vesicles against Bacteria.
Biomedicines. 2022 Sep 26;10(10):2399. doi: 10.3390/biomedicines10102399.
3
Small-Molecular Adjuvants with Weak Membrane Perturbation Potentiate Antibiotics against Gram-Negative Superbugs.
ACS Infect Dis. 2022 May 13;8(5):1086-1097. doi: 10.1021/acsinfecdis.2c00092. Epub 2022 Apr 11.
4
Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications.
J Transl Med. 2022 Mar 14;20(1):125. doi: 10.1186/s12967-022-03325-7.
6
Bacterial Outer Membrane Vesicles as Antibiotic Delivery Vehicles.
Front Immunol. 2021 Sep 20;12:733064. doi: 10.3389/fimmu.2021.733064. eCollection 2021.
7
Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy.
J Extracell Vesicles. 2021 Jul;10(9):e12120. doi: 10.1002/jev2.12120. Epub 2021 Jul 3.
8
Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Biofilms.
Pharmaceutics. 2021 Mar 2;13(3):321. doi: 10.3390/pharmaceutics13030321.
9
Membrane Vesicle Production as a Bacterial Defense Against Stress.
Front Microbiol. 2020 Dec 9;11:600221. doi: 10.3389/fmicb.2020.600221. eCollection 2020.
10
Doxorubicin-loaded bacterial outer-membrane vesicles exert enhanced anti-tumor efficacy in non-small-cell lung cancer.
Acta Pharm Sin B. 2020 Aug;10(8):1534-1548. doi: 10.1016/j.apsb.2020.02.002. Epub 2020 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验