Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
J Neuroimmune Pharmacol. 2020 Sep;15(3):443-458. doi: 10.1007/s11481-019-09875-w. Epub 2019 Sep 4.
Effective drug delivery to the CNS to achieve the desired therapeutic response is a significant challenge in the field of drug delivery. In central nervous system (CNS), blood brain barrier (BBB) restricts the desired therapeutic responses due to inefficient targeting, release kinetics, and failure to reach therapeutic concentrations in the brain. Therefore, most potentially beneficial diagnostic and therapeutic agents are not able to reach to the brain upon systemic administration. Despite the existence of many invasive techniques to promote drug deliveries across BBB, novel strategies of drug delivery system which can cross BBB effectively are required, otherwise translation of novel neurotherapeutics from bench to bedside will be difficult to achieve. In this review, we briefly outline the existing and emerging strategies for CNS drug deliveries with a focus on potential and challenges of using extracellular vesicles (EVs) in CNS drug delivery system. EVs are emerging as a promising tool for therapeutic delivery owing to its favorable intrinsic features of biocompatibility, stability, stealth capacity, ability to overcome natural barriers and inherent homing capability. EVs are nanovesicles that allow cell-cell communication. The EVs-cargo reflects the physiological as well as the pathophysiological state of a cell. EVs are shown to play a role in human immunodeficiency virus (HIV) infection and dissemination, which contributes to acquired immune deficiency syndrome (AIDS). In the context of HIV-1 infection, this review also outlines the role of EVs in dissemination, challenges faced in EVs research in HIV-1 co-morbid conditions and potential of nanotechnologies, especially EVs in Neuro-AIDS. Graphical Abstract EVs are used for the delivery of small molecule drugs, protein, and nucleic acid to the CNS as well as imaging molecules for in vivo tracking. For the purpose of delivery, EVs may or may not be subjected to membrane modification. The advantages of EVs, including its biocompatibility, low immunogenicity, and low toxicity profiles, can be exploited to potentially devise novel therapeutic delivery system for CNS drug targeting. This article outlines the challenges in potential EV-based therapeutic delivery.
将药物有效递送至中枢神经系统以实现所需的治疗反应是药物递释领域的一个重大挑战。在中枢神经系统(CNS)中,血脑屏障(BBB)由于靶向效率低、释放动力学和无法在大脑中达到治疗浓度,限制了所需的治疗反应。因此,大多数具有潜在益处的诊断和治疗剂在全身给药后无法到达大脑。尽管存在许多促进药物穿过 BBB 的侵入性技术,但仍需要新型的药物递释系统策略,否则将难以将新型神经治疗药物从实验室转化为临床应用。在本综述中,我们简要概述了 CNS 药物递释的现有和新兴策略,重点介绍了使用细胞外囊泡(EVs)作为 CNS 药物递释系统的潜力和挑战。EVs 作为一种有前途的治疗药物递释工具,由于其具有生物相容性、稳定性、隐身能力、克服天然屏障的能力和固有的归巢能力等有利的固有特性而受到关注。EVs 是允许细胞间通讯的纳米囊泡。EVs-货物反映了细胞的生理和病理生理状态。EVs 被证明在人类免疫缺陷病毒(HIV)感染和传播中发挥作用,这导致获得性免疫缺陷综合征(AIDS)。在 HIV-1 感染的背景下,本综述还概述了 EVs 在传播中的作用、EVs 在 HIV-1 合并症研究中面临的挑战以及纳米技术,特别是 EVs 在神经艾滋病中的应用。 图摘要 EVs 用于向 CNS 递送小分子药物、蛋白质和核酸以及用于体内追踪的成像分子。出于递送目的,EVs 可以或可以不进行膜修饰。EVs 的优点,包括其生物相容性、低免疫原性和低毒性特征,可以被利用来潜在地设计用于 CNS 药物靶向的新型治疗性递释系统。本文概述了基于 EV 的治疗性递释的潜在挑战。