Suppr超能文献

燃烧激活诱导的 N、B 共掺杂碳/硼酸锌固态合成,提升钠离子存储性能。

Combustion Activation Induced Solid-State Synthesis for N, B Co-Doped Carbon/Zinc Borate Anode with a Boosting of Sodium Storage Performance.

机构信息

College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.

Department of Physics, Department of Chemistry, Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Adv Sci (Weinh). 2023 May;10(14):e2207751. doi: 10.1002/advs.202207751. Epub 2023 Mar 20.

Abstract

Zinc borates have merits of low voltage polarization and suitable redox potential, but usually suffer from low rate capability and poor cycling life, as an emerging anode candidate for Na storage. Here, a new intercalator-guided synthesis strategy is reported to simultaneously improve rate capability and stabilize cycling life of N, B co-doped carbon/zinc borates (CBZG). The strategy relies on a uniform dispersion of precursors and simultaneously stimulated combustion activation and solid-state reactions capable of scalable preparation. The Na storage mechanism of CBZG is studied: 1) ex situ XRD and XPS demonstrate two-step reaction sequence of Na storage: Zn O(OH)(BO ) +Na +e ↔3ZnO+Zn B O +NaBO +0.5H ①, Zn B O +6Na +6e ↔3Zn+3Na O+B O ②; reaction ① is irreversible in ether-based electrolyte while reversible in ester-based electrolyte. 2) Electrochemical kinetics reveal that ether-based electrolyte possesses faster Na storage than ester-based electrolyte. The composite demonstrates an excellent capacity of 437.4 mAh g in a half-cell, together with application potential in full cells (discharge capacity of 440.1 mAh g and stable cycle performance of 2000 cycles at 5 A g ). These studies will undoubtedly provide an avenue for developing novel synthetic methods of carbon-based borates and give new insights into the mechanism of Na storage in ether-based electrolyte for the desirable sodium storage.

摘要

硼酸锌具有低电压极化和合适的氧化还原电位的优点,但通常存在倍率性能和循环寿命差的问题,因此作为一种新兴的钠离子存储负极候选材料。在此,我们报道了一种新的插层剂引导的合成策略,可同时提高 N、B 共掺杂碳/硼酸锌(CBZG)的倍率性能和稳定循环寿命。该策略依赖于前驱体的均匀分散以及同时激发的燃烧激活和固态反应,可实现规模化制备。我们研究了 CBZG 的储钠机制:1) 原位 XRD 和 XPS 证明了储钠的两步反应序列:ZnO(OH)(BO )+Na +e ↔3ZnO+ZnBO +NaBO +0.5H ①,ZnBO +6Na +6e ↔3Zn+3Na O+BO ②;反应 ① 在醚基电解质中不可逆,而在酯基电解质中可逆。2) 电化学动力学表明,醚基电解质具有比酯基电解质更快的钠离子存储速度。该复合材料在半电池中表现出出色的 437.4 mAh g-1 容量,在全电池中具有应用潜力(在 5 A g-1 下的放电容量为 440.1 mAh g-1 和稳定的 2000 次循环性能)。这些研究无疑为开发新型碳基硼酸盐的合成方法提供了途径,并为醚基电解质中钠离子存储的机制提供了新的见解,为理想的钠离子存储提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfae/10190504/fed2d3b39e57/ADVS-10-2207751-g010.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验