Suppr超能文献

基于多流融合编码器的 MRI 前列腺癌分割。

Prostate cancer segmentation from MRI by a multistream fusion encoder.

机构信息

Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.

Aliyun School of Big Data, Changzhou University, Changzhou, China.

出版信息

Med Phys. 2023 Sep;50(9):5489-5504. doi: 10.1002/mp.16374. Epub 2023 Apr 5.

Abstract

BACKGROUND

Targeted prostate biopsy guided by multiparametric magnetic resonance imaging (mpMRI) detects more clinically significant lesions than conventional systemic biopsy. Lesion segmentation is required for planning MRI-targeted biopsies. The requirement for integrating image features available in T2-weighted and diffusion-weighted images poses a challenge in prostate lesion segmentation from mpMRI.

PURPOSE

A flexible and efficient multistream fusion encoder is proposed in this work to facilitate the multiscale fusion of features from multiple imaging streams. A patch-based loss function is introduced to improve the accuracy in segmenting small lesions.

METHODS

The proposed multistream encoder fuses features extracted in the three imaging streams at each layer of the network, thereby allowing improved feature maps to propagate downstream and benefit segmentation performance. The fusion is achieved through a spatial attention map generated by optimally weighting the contribution of the convolution outputs from each stream. This design provides flexibility for the network to highlight image modalities according to their relative influence on the segmentation performance. The encoder also performs multiscale integration by highlighting the input feature maps (low-level features) with the spatial attention maps generated from convolution outputs (high-level features). The Dice similarity coefficient (DSC), serving as a cost function, is less sensitive to incorrect segmentation for small lesions. We address this issue by introducing a patch-based loss function that provides an average of the DSCs obtained from local image patches. This local average DSC is equally sensitive to large and small lesions, as the patch-based DSCs associated with small and large lesions have equal weights in this average DSC.

RESULTS

The framework was evaluated in 931 sets of images acquired in several clinical studies at two centers in Hong Kong and the United Kingdom. In particular, the training, validation, and test sets contain 615, 144, and 172 sets of images, respectively. The proposed framework outperformed single-stream networks and three recently proposed multistream networks, attaining F scores of 82.2 and 87.6% in the lesion and patient levels, respectively. The average inference time for an axial image was 11.8 ms.

CONCLUSION

The accuracy and efficiency afforded by the proposed framework would accelerate the MRI interpretation workflow of MRI-targeted biopsy and focal therapies.

摘要

背景

多参数磁共振成像(mpMRI)引导的靶向前列腺活检比传统的系统活检检测到更多具有临床意义的病变。MRI 靶向活检需要对病变进行分割。整合 T2 加权和扩散加权图像中的图像特征的要求给前列腺病变的 mpMRI 分割带来了挑战。

目的

本研究提出了一种灵活高效的多流融合编码器,以促进多尺度融合来自多个成像流的特征。引入基于补丁的损失函数以提高分割小病变的准确性。

方法

所提出的多流编码器在网络的每一层融合从三个成像流中提取的特征,从而允许改进的特征图向下游传播并受益于分割性能。融合是通过最优地加权每个流的卷积输出的贡献生成的空间注意力图来实现的。这种设计为网络提供了根据其对分割性能的相对影响突出图像模态的灵活性。该编码器还通过用从卷积输出生成的空间注意力图突出输入特征图(低水平特征)来进行多尺度集成(高水平特征)。Dice 相似系数(DSC)作为成本函数,对小病变的错误分割不敏感。我们通过引入基于补丁的损失函数来解决这个问题,该函数提供了从局部图像补丁获得的 DSC 的平均值。该局部平均 DSC 对大病变和小病变同样敏感,因为与小病变和大病变相关的基于补丁的 DSC 在该平均 DSC 中具有相同的权重。

结果

该框架在香港和英国两个中心的多个临床研究中采集的 931 组图像中进行了评估。特别是,训练、验证和测试集分别包含 615、144 和 172 组图像。所提出的框架优于单流网络和三个最近提出的多流网络,在病变和患者水平上的 F 分数分别达到 82.2%和 87.6%。轴向图像的平均推断时间为 11.8ms。

结论

所提出的框架的准确性和效率将加速 MRI 靶向活检和局灶性治疗的 MRI 解释工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验