Arshad Muhammad, Wang Chengliang, Wajeeh Us Sima Muhammad, Shaikh Jamshed Ali, Alkhalaf Salem, Alturise Fahad
College of Computer Science, Chongqing University, Shapingba, Chongqing, China.
Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia.
Front Med (Lausanne). 2025 Jun 26;12:1589707. doi: 10.3389/fmed.2025.1589707. eCollection 2025.
Accurate segmentation of the prostate in T2-weighted MRI is critical for effective prostate diagnosis and treatment planning. Existing methods often struggle with the complex textures and subtle variations in the prostate. To address these challenges, we propose RaNet (Residual Attention Network), a novel framework based on ResNet50, incorporating three key modules: the DilatedContextNet (DCNet) encoder, the Multi-Scale Attention Fusion (MSAF), and the Feature Fusion Module (FFM). The encoder leverages residual connections to extract hierarchical features, capturing both fine-grained details and multi-scale patterns in the prostate. The MSAF enhances segmentation by dynamically focusing on key regions, refining feature selection and minimizing errors, while the FFM optimizes the handling of spatial hierarchies and varying object sizes, improving boundary delineation. The decoder mirrors the encoder's structure, using deconvolutional layers and skip connections to retain essential spatial details. We evaluated RaNet on a prostate MRI dataset PROMISE12 and ProstateX , achieving a DSC of 98.61 and 96.57 respectively. RaNet also demonstrated robustness to imaging artifacts and MRI protocol variability, confirming its applicability across diverse clinical scenarios. With a balance of segmentation accuracy and computational efficiency, RaNet is well suited for real-time clinical use, offering a powerful tool for precise delineation and enhanced prostate diagnostics.
在T2加权磁共振成像(MRI)中准确分割前列腺对于有效的前列腺诊断和治疗规划至关重要。现有方法在处理前列腺复杂的纹理和细微变化时常常面临困难。为应对这些挑战,我们提出了RaNet(残差注意力网络),这是一个基于ResNet50的新型框架,包含三个关键模块:扩张上下文网络(DCNet)编码器、多尺度注意力融合(MSAF)和特征融合模块(FFM)。编码器利用残差连接来提取分层特征,捕捉前列腺中的细粒度细节和多尺度模式。MSAF通过动态聚焦关键区域、优化特征选择和最小化误差来增强分割效果,而FFM则优化对空间层次和不同物体大小的处理,改善边界描绘。解码器镜像编码器的结构,使用反卷积层和跳跃连接来保留基本的空间细节。我们在前列腺MRI数据集PROMISE12和ProstateX上对RaNet进行了评估,分别实现了98.61和96.57的Dice相似系数(DSC)。RaNet还展示了对成像伪影和MRI协议变异性的鲁棒性,证实了其在各种临床场景中的适用性。在分割精度和计算效率之间取得平衡后,RaNet非常适合实时临床应用,为精确描绘和增强前列腺诊断提供了一个强大的工具。