Division of Parasitic Diseases and Malaria, National Center of Global Health, Centers for Disease Control and Prevention (MS A-06), Atlanta, Georgia, USA.
Department of Anesthesiology and Yale Center for Analytical Sciences, Yale School of Medicine, 333 Cedar Street, P.O. Box 208051, New Haven, New York, 06520-8051, USA.
Biom J. 2023 Jun;65(5):e2200127. doi: 10.1002/bimj.202200127. Epub 2023 Mar 20.
We propose a censored quantile regression model for the analysis of relative survival data. We create a hybrid data set consisting of the study observations and counterpart randomly sampled pseudopopulation observations imputed from population life tables that adjust for expected mortality. We then fit a censored quantile regression model to the hybrid data incorporating demographic variables (e.g., age, biologic sex, calendar time) corresponding to the population life tables of demographically-similar individuals, a population versus study covariate, and its interactions with the variables of interest. These latter variables can be interpreted as relative survival parameters that depict the differences in failure quantiles between the study participants and their population counterparts.
我们提出了一种有删失的分位数回归模型,用于分析相对生存数据。我们创建了一个混合数据集,由研究观察值和从人口生命表中随机抽样的伪人口观察值组成,这些观察值是通过调整预期死亡率得到的。然后,我们将混合数据拟合到包含人口生命表中与研究人群具有相似人口统计学特征的个体相对应的人口统计学变量(如年龄、生物性别、日历时间)、一个人群与研究的协变量及其与感兴趣的变量的交互作用的有删失的分位数回归模型中。这些变量可以被解释为相对生存参数,它们描述了研究参与者与他们的人口统计学对照者之间失败分位数的差异。