Department of Statistics, Korea University, Seongbuk-gu, Seoul, South Korea.
Biom J. 2021 Jan;63(1):201-212. doi: 10.1002/bimj.201900250. Epub 2020 Sep 9.
Sufficient dimension reduction (SDR) that effectively reduces the predictor dimension in regression has been popular in high-dimensional data analysis. Under the presence of censoring, however, most existing SDR methods suffer. In this article, we propose a new algorithm to perform SDR with censored responses based on the quantile-slicing scheme recently proposed by Kim et al. First, we estimate the conditional quantile function of the true survival time via the censored kernel quantile regression (Shin et al.) and then slice the data based on the estimated censored regression quantiles instead of the responses. Both simulated and real data analysis demonstrate promising performance of the proposed method.
充分降维 (SDR) 有效地降低了回归中的预测变量维度,在高维数据分析中很受欢迎。然而,在存在删失的情况下,大多数现有的 SDR 方法都会受到影响。在本文中,我们基于 Kim 等人最近提出的分位数切片方案,提出了一种新的基于删失响应的 SDR 算法。首先,我们通过删失核分位数回归(Shin 等人)估计真实生存时间的条件分位数函数,然后根据估计的删失回归分位数而不是响应对数据进行切片。模拟数据和真实数据分析都表明了所提出方法的良好性能。