Suppr超能文献

一种基于哈希的框架,用于增强高维单细胞图谱的聚类划分

A Hashing-Based Framework for Enhancing Cluster Delineation of High-Dimensional Single-Cell Profiles.

作者信息

Liu Xiao, Zhang Ting, Tan Ziyang, Warden Antony R, Li Shanhe, Cheung Edwin, Ding Xianting

机构信息

Institute of Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030 China.

Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, 999078 China.

出版信息

Phenomics. 2022 May 19;2(5):323-335. doi: 10.1007/s43657-022-00056-z. eCollection 2022 Oct.

Abstract

UNLABELLED

Although many methods have been developed to explore the function of cells by clustering high-dimensional (HD) single-cell omics data, the inconspicuously differential expressions of biomarkers of proteins or genes across all cells disturb the cell cluster delineation and downstream analysis. Here, we introduce a hashing-based framework to improve the delineation of cell clusters, which is based on the hypothesis that one variable with no significant differences can be decomposed into more diversely latent variables to distinguish cells. By projecting the original data into a sparse HD space, fly and densefly hashing preprocessing retain the local structure of data, and improve the cluster delineation of existing clustering methods, such as PhenoGraph. Moreover, the analyses on mass cytometry dataset show that our hashing-based framework manages to unveil new hidden heterogeneities in cell clusters. The proposed framework promotes the utilization of cell biomarkers and enriches the biological findings by introducing more latent variables.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-022-00056-z.

摘要

未标注

尽管已经开发了许多方法,通过对高维(HD)单细胞组学数据进行聚类来探索细胞功能,但蛋白质或基因生物标志物在所有细胞中的差异表达不明显,这干扰了细胞聚类的划分和下游分析。在此,我们引入了一种基于哈希的框架来改进细胞聚类的划分,该框架基于这样一种假设:一个没有显著差异的变量可以分解为更多样化的潜在变量来区分细胞。通过将原始数据投影到稀疏高维空间中,fly和densefly哈希预处理保留了数据的局部结构,并改进了现有聚类方法(如PhenoGraph)的聚类划分。此外,对质谱流式细胞术数据集的分析表明,我们基于哈希的框架成功揭示了细胞聚类中新的隐藏异质性。所提出的框架通过引入更多潜在变量,促进了细胞生物标志物的利用,并丰富了生物学发现。

补充信息

在线版本包含可在10.1007/s43657-022-00056-z获取的补充材料。

相似文献

2
Cluster stability in the analysis of mass cytometry data.质谱流式细胞术数据分析中的聚类稳定性
Cytometry A. 2017 Jan;91(1):73-84. doi: 10.1002/cyto.a.23001. Epub 2016 Oct 18.
4
Flexible Cross-Modal Hashing.灵活的跨模态哈希
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):304-314. doi: 10.1109/TNNLS.2020.3027729. Epub 2022 Jan 5.
7
Distributed Graph Hashing.分布式图哈希
IEEE Trans Cybern. 2019 May;49(5):1896-1908. doi: 10.1109/TCYB.2018.2816791. Epub 2018 Apr 5.
8
Hashing on nonlinear manifolds.非线性流形上的哈希。
IEEE Trans Image Process. 2015 Jun;24(6):1839-51. doi: 10.1109/TIP.2015.2405340.
9
A sparse embedding and least variance encoding approach to hashing.一种用于哈希的稀疏嵌入和最小方差编码方法。
IEEE Trans Image Process. 2014 Sep;23(9):3737-50. doi: 10.1109/TIP.2014.2332764. Epub 2014 Jun 25.

本文引用的文献

1
Analyzing high-dimensional cytometry data using FlowSOM.使用 FlowSOM 分析高维流式细胞术数据。
Nat Protoc. 2021 Aug;16(8):3775-3801. doi: 10.1038/s41596-021-00550-0. Epub 2021 Jun 25.
4
Minimizing Batch Effects in Mass Cytometry Data.最小化液质联用数据分析中的批次效应。
Front Immunol. 2019 Oct 15;10:2367. doi: 10.3389/fimmu.2019.02367. eCollection 2019.
6
Targeting DDR2 enhances tumor response to anti-PD-1 immunotherapy.靶向 DDR2 可增强肿瘤对抗 PD-1 免疫治疗的反应。
Sci Adv. 2019 Feb 20;5(2):eaav2437. doi: 10.1126/sciadv.aav2437. eCollection 2019 Feb.
7
Commensal Microbiota Promote Lung Cancer Development via γδ T Cells.共生菌群通过 γδ T 细胞促进肺癌发生。
Cell. 2019 Feb 21;176(5):998-1013.e16. doi: 10.1016/j.cell.2018.12.040. Epub 2019 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验