Centre for Microsystems Technology, Ghent University and Imec, Technologiepark 126, 9052, Ghent, Belgium.
Miranza Begitek, San Sebastian, Spain.
Sci Rep. 2023 Mar 20;13(1):4555. doi: 10.1038/s41598-023-31525-8.
To develop a novel algorithm based on ray tracing, simulated visual performance and through-focus optimization for an accurate intraocular lens (IOL) power calculation. Custom-developed algorithms for ray tracing optimization (RTO) were used to combine the natural corneal higher-order aberrations (HOAs) with multiple sphero-cylindrical corrections in 210 higher order statistical eye models for developing keratoconus. The magnitude of defocus and astigmatism producing the maximum Visual Strehl was considered as the optimal sphero-cylindrical target for IOL power calculation. Corneal astigmatism and the RMS HOAs ranged from - 0.64 ± 0.35D and 0.10 ± 0.04 μm (0-months) to - 3.15 ± 1.38D and 0.82 ± 0.47 μm (120-months). Defocus and astigmatism target was close to neutral for eyes with low amount of HOAs (0 and 12-months), where 91.66% of eyes agreed within ± 0.50D in IOL power calculation (RTO vs. SRK/T). However, corneas with higher amounts of HOAs presented greater visual improvement with an optimized target. In these eyes (24- to 120-months), only 18.05% of eyes agreed within ± 0.50D (RTO vs. SRK/T). The power difference exceeded 3D in 42.2% while the cylinder required adjustments larger than 3D in 18.4% of the cases. Certain amounts of lower and HOAs may interact favourably to improve visual performance, shifting therefore the refractive target for IOL power calculation.
为了开发一种基于光线追踪的新算法,模拟视觉性能并进行焦点优化,以实现准确的人工晶状体(IOL)屈光力计算。定制的光线追踪优化(RTO)算法用于将天然角膜高阶像差(HOAs)与 210 个高次统计眼模型中的多个球镜-柱镜校正相结合,用于开发圆锥角膜。最大视觉斯特雷尔(Strehl)的离焦量和散光量被认为是用于 IOL 屈光力计算的最佳球镜-柱镜目标。角膜散光和 RMS HOAs 的范围从-0.64±0.35D 和 0.10±0.04μm(0 个月)到-3.15±1.38D 和 0.82±0.47μm(120 个月)。对于低 HOAs(0 和 12 个月)的眼睛,离焦量和散光量的目标接近中性,其中 91.66%的眼睛在 IOL 屈光力计算(RTO 与 SRK/T)中相差在 0.50D 以内。然而,具有较高 HOAs 的角膜表现出更好的视觉改善,具有优化的目标。在这些眼睛(24 至 120 个月)中,只有 18.05%的眼睛在 IOL 屈光力计算(RTO 与 SRK/T)中相差在 0.50D 以内。42.2%的病例屈光度差异超过 3D,18.4%的病例所需的柱镜调整大于 3D。一定量的低阶和高阶像差可能会有利地相互作用,从而改善视觉性能,因此改变 IOL 屈光力计算的屈光目标。