Suppr超能文献

从巴甫洛夫条件反射到赫布学习。

From Pavlov Conditioning to Hebb Learning.

机构信息

Sapienza University of Rome, Department of Mathematics, 00185, Rome, Italy.

Istituto Nazionale d'Alta Matematica, 00185, Rome, Italy

出版信息

Neural Comput. 2023 Apr 18;35(5):930-957. doi: 10.1162/neco_a_01578.

Abstract

Hebb's learning traces its origin in Pavlov's classical conditioning; however, while the former has been extensively modeled in the past decades (e.g., by the Hopfield model and countless variations on theme), as for the latter, modeling has remained largely unaddressed so far. Furthermore, a mathematical bridge connecting these two pillars is totally lacking. The main difficulty toward this goal lies in the intrinsically different scales of the information involved: Pavlov's theory is about correlations between concepts that are (dynamically) stored in the synaptic matrix as exemplified by the celebrated experiment starring a dog and a ringing bell; conversely, Hebb's theory is about correlations between pairs of neurons as summarized by the famous statement that neurons that fire together wire together. In this letter, we rely on stochastic process theory to prove that as long as we keep neurons' and synapses' timescales largely split, Pavlov's mechanism spontaneously takes place and ultimately gives rise to synaptic weights that recover the Hebbian kernel.

摘要

Hebb 学习的起源可以追溯到巴甫洛夫的经典条件作用;然而,尽管前者在过去几十年中得到了广泛的建模(例如,通过 Hopfield 模型和无数主题的变体),但对于后者,建模至今仍未得到充分解决。此外,这两个支柱之间的数学桥梁完全缺失。实现这一目标的主要困难在于所涉及信息的固有不同尺度:巴甫洛夫的理论是关于概念之间的相关性,这些相关性作为突触矩阵中的动态存储,正如著名的狗和铃声实验所证明的那样;相反,赫布的理论是关于神经元对之间的相关性,正如著名的陈述所总结的那样,一起发射的神经元会一起连接。在这封信中,我们依赖随机过程理论来证明,只要我们保持神经元和突触的时间尺度基本分开,巴甫洛夫的机制就会自发发生,并最终导致恢复赫布核的突触权重。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验