Lira R N, Riseborough P S, Silva-Valencia J, Figueira M S
Instituto de Física, Universidade Federal Fluminense, Niterói, RJ, Brazil.
Department of Physics, Temple University, Philadelphia, PA, United States of America.
J Phys Condens Matter. 2023 Mar 29;35(24). doi: 10.1088/1361-648X/acc628.
We use the cumulant Green's functions method (CGFM) to study the single-band Hubbard model. The starting point of the method is to diagonalize a cluster ('seed') containingcorrelated sites and employ the cumulants calculated from the cluster solution to obtain the full Green's functions for the lattice. All calculations are done directly; no variational or self-consistent process is needed. We benchmark the one-dimensional results for the gap, the double occupancy, and the ground-state energy as functions of the electronic correlation at half-filling and the occupation numbers as functions of the chemical potential obtained from the CGFM against the corresponding results of the thermodynamic Bethe ansatz and the quantum transfer matrix methods. The particle-hole symmetry of the density of states is fulfilled, and the gap, occupation numbers, and ground-state energy tend systematically to the known results as the cluster size increases. We include a straightforward application of the CGFM to simulate the singles occupation of an optical lattice experiment with lithium-6 atoms in an eight-site Fermi-Hubbard chain near half-filling. The method can be applied to any parameter space for one, two, or three-dimensional Hubbard Hamiltonians and extended to other strongly correlated models, like the Anderson Hamiltonian, the - , Kondo, and Coqblin-Schrieffer models.
我们使用累积量格林函数方法(CGFM)来研究单带哈伯德模型。该方法的出发点是对包含相关格点的一个团簇(“种子”)进行对角化,并利用从团簇解计算得到的累积量来获得晶格的完整格林函数。所有计算都是直接进行的;不需要变分或自洽过程。我们将CGFM得到的半填充时能隙、双占据数和基态能量作为电子关联函数以及占据数作为化学势函数的一维结果,与热力学贝塞耳假设和量子转移矩阵方法的相应结果进行基准对比。态密度的粒子 - 空穴对称性得到满足,并且随着团簇尺寸的增加,能隙、占据数和基态能量系统地趋向于已知结果。我们给出了CGFM的一个直接应用,即模拟在接近半填充的八格点费米 - 哈伯德链中锂 - 6原子的光晶格实验中的单占据情况。该方法可以应用于一维、二维或三维哈伯德哈密顿量的任何参数空间,并扩展到其他强关联模型,如安德森哈密顿量、 - 、近藤和科克伦 - 施里弗模型。