Mootz Martin, Iadecola Thomas, Yao Yong-Xin
Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States.
J Chem Theory Comput. 2024 Oct 8;20(19):8689-8710. doi: 10.1021/acs.jctc.4c00874. Epub 2024 Sep 27.
We present and benchmark quantum computing approaches for calculating real-time single-particle Green's functions and nonlinear susceptibilities of Hamiltonian systems. The approaches leverage adaptive variational quantum algorithms for state preparation and propagation. Using automatically generated compact circuits, the dynamical evolution is performed over sufficiently long times to achieve adequate frequency resolution of the response functions. We showcase accurate Green's function calculations using a statevector simulator on classical hardware for Fermi-Hubbard chains of 4 and 6 sites, with maximal ansatz circuit depths of 65 and 424 layers, respectively, and for the molecule LiH with a maximal ansatz circuit depth of 81 layers. Additionally, we consider an antiferromagnetic quantum spin-1 model that incorporates the Dzyaloshinskii-Moriya interaction to illustrate calculations of the third-order nonlinear susceptibilities, which can be measured in two-dimensional coherent spectroscopy experiments. These results demonstrate that real-time approaches using adaptive parametrized circuits to evaluate linear and nonlinear response functions can be feasible with near-term quantum processors.
我们展示并对用于计算哈密顿系统实时单粒子格林函数和非线性磁化率的量子计算方法进行基准测试。这些方法利用自适应变分量子算法进行态制备和演化。通过自动生成的紧凑电路,动力学演化在足够长的时间内进行,以实现响应函数的足够频率分辨率。我们使用经典硬件上的态矢模拟器展示了对4个和6个格点的费米-哈伯德链的精确格林函数计算,其最大试探电路深度分别为65层和424层,以及对最大试探电路深度为81层的分子LiH的精确格林函数计算。此外,我们考虑一个包含Dzyaloshinskii-Moriya相互作用的反铁磁量子自旋-1模型,以说明三阶非线性磁化率的计算,该三阶非线性磁化率可在二维相干光谱实验中测量。这些结果表明,使用自适应参数化电路评估线性和非线性响应函数的实时方法对于近期量子处理器而言可能是可行的。