Suppr超能文献

广义线性建模方法在多帧 PET 图像数据中的应用。

A Generalized Linear modeling approach to bootstrapping multi-frame PET image data.

机构信息

Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, T12XF62, Ireland.

Department of Statistics, School of Mathematical Sciences, University College Cork, Cork, T12XF62, Ireland.

出版信息

Med Image Anal. 2021 Aug;72:102132. doi: 10.1016/j.media.2021.102132. Epub 2021 Jun 12.

Abstract

PET imaging is an important diagnostic tool for management of patients with cancer and other diseases. Medical decisions based on quantitative PET information could potentially benefit from the availability of tools for evaluation of associated uncertainties. Raw PET data can be viewed as a sample from an inhomogeneous Poisson process so there is the possibility to directly apply bootstrapping to raw projection-domain list-mode data. Unfortunately this is computationally impractical, particularly if data reconstruction is iterative or the acquisition protocol is dynamic. We develop a flexible statistical linear model analysis to be used with multi-frame PET image data to create valid bootstrap samples. The technique is illustrated using data from dynamic PET studies with fluoro-deoxyglucose (FDG) and fluoro-thymidine (FLT) in brain and breast cancer patients. As is often the case with dynamic PET studies, data have been archived without raw list-mode information. Using the bootstrapping technique maps of kinetic parameters and associated uncertainties are obtained. The quantitative performance of the approach is assessed by simulation. The proposed image-domain bootstrap is found to substantially match the projection-domain alternative. Analysis of results points to a close relation between relative uncertainty in voxel-level kinetic parameters and local reconstruction error. This is consistent with statistical theory.

摘要

正电子发射断层成像(PET)是癌症和其他疾病患者管理的重要诊断工具。基于定量 PET 信息的医疗决策可能会受益于评估相关不确定性的工具的可用性。原始 PET 数据可以被视为不均匀泊松过程的样本,因此有可能直接将自举法应用于原始投影域列表模式数据。不幸的是,这在计算上是不切实际的,特别是如果数据重建是迭代的,或者采集协议是动态的。我们开发了一种灵活的统计线性模型分析方法,用于多帧 PET 图像数据,以创建有效的自举样本。该技术使用来自脑癌和乳腺癌患者的氟脱氧葡萄糖(FDG)和氟胸腺嘧啶(FLT)动态 PET 研究的数据进行说明。与动态 PET 研究一样,数据已存档,而没有原始列表模式信息。使用自举技术,可以获得动力学参数和相关不确定性的图谱。通过模拟评估了该方法的定量性能。所提出的图像域自举方法与投影域方法非常匹配。结果分析表明,体素水平动力学参数的相对不确定性与局部重建误差之间存在密切关系。这与统计理论一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eca/8717713/1cc44d686a70/nihms-1762965-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验