Department of Orthopedics and Traumatology, Faculty of medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Department of Medical Imaging and Radiation Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Curr Radiopharm. 2023 Jun 5;16(3):222-232. doi: 10.2174/1874471016666230321120941.
Low-energy proximal femur fractures in elderly patients result from factors, like osteoporosis and falls. These fractures impose high rates of economic and social costs. In this study, we aimed to build predictive models by applying machine learning (ML) methods on radiomics features to predict low-energy proximal femur fractures.
Computed tomography scans of 40 patients (mean ± standard deviation of age = 71 ± 6) with low-energy proximal femur fractures (before a fracture occurs) and 40 individuals (mean ± standard deviation of age = 73 ± 7) as a control group were included. The regions of interest, including neck, trochanteric, and intertrochanteric, were drawn manually. The combinations of 25 classification methods and 8 feature selection methods were applied to radiomics features extracted from ROIs. Accuracy and the area under the receiver operator characteristic curve (AUC) were used to assess ML models' performance.
AUC and accuracy values ranged from 0.408 to 1 and 0.697 to 1, respectively. Three classification methods, including multilayer perceptron (MLP), sequential minimal optimization (SMO), and stochastic gradient descent (SGD), in combination with the feature selection method, SVM attribute evaluation (SAE), exhibited the highest performance in the neck (AUC = 0.999, 0.971 and 0.971, respectively; accuracy = 0.988, 0.988, and 0.988, respectively) and the trochanteric (AUC = 1, 1 and 1, respectively; accuracy = 1, 1 and 1, respectively) regions. The same methods demonstrated the highest performance for the combination of the 3 ROIs' features (AUC = 1, 1 and 1, respectively; accuracy =1, 1 and 1, respectively). In the intertrochanteric region, the combination methods, MLP + SAE, SMO + SAE, and SGD + SAE, as well as the combination of the SAE method and logistic regression (LR) classification method exhibited the highest performance (AUC = 1, 1, 1 and 1, respectively; accuracy= 1, 1, 1 and 1, respectively).
Applying machine learning methods to radiomics features is a powerful tool to predict low-energy proximal femur fractures. The results of this study can be verified by conducting more research on bigger datasets.
老年人低能量股骨近端骨折是由骨质疏松症和跌倒等因素引起的。这些骨折带来了高昂的经济和社会成本。在这项研究中,我们旨在通过应用机器学习(ML)方法对放射组学特征进行建模,以预测低能量股骨近端骨折。
纳入了 40 例低能量股骨近端骨折患者(骨折前)(平均年龄±标准差=71±6)和 40 名对照组个体(平均年龄±标准差=73±7)的计算机断层扫描。手动绘制感兴趣区域,包括颈部、转子间和转子下区。将 25 种分类方法和 8 种特征选择方法的组合应用于从 ROI 提取的放射组学特征。准确性和接收器工作特征曲线(AUC)下的面积用于评估 ML 模型的性能。
AUC 和准确性值范围分别为 0.408 至 1 和 0.697 至 1。三种分类方法,包括多层感知器(MLP)、顺序最小优化(SMO)和随机梯度下降(SGD),与特征选择方法 SVM 属性评估(SAE)结合使用,在颈部(AUC=0.999、0.971 和 0.971;准确性=0.988、0.988 和 0.988)和转子间区(AUC=1、1 和 1;准确性=1、1 和 1)表现出最高性能。相同的方法在 3 个 ROI 特征的组合中表现出最高性能(AUC=1、1 和 1;准确性=1、1 和 1)。在转子下区,组合方法 MLP+SAE、SMO+SAE 和 SGD+SAE 以及 SAE 方法与逻辑回归(LR)分类方法的组合表现出最高性能(AUC=1、1、1 和 1;准确性=1、1、1 和 1)。
将机器学习方法应用于放射组学特征是预测低能量股骨近端骨折的有力工具。可以通过在更大的数据集上进行更多研究来验证本研究的结果。