Suppr超能文献

基于腹部 CT 股骨近端的机器学习分析用于筛查股骨骨量异常。

Applying Machine Learning Analysis Based on Proximal Femur of Abdominal Computed Tomography to Screen for Abnormal Bone Mass in Femur.

机构信息

Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China.

Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China.

出版信息

Acad Radiol. 2024 May;31(5):2003-2010. doi: 10.1016/j.acra.2023.10.035. Epub 2023 Nov 15.

Abstract

RATIONALE AND OBJECTIVES

To evaluate the performance of machine learning analysis based on proximal femur of abdominal computed tomography (CT) scans in screening for abnormal bone mass in femur.

MATERIALS AND METHODS

222 patients aged 50 years or older who underwent abdominal CT and dual-energy X-ray absorptiometry scans within 14 days were retrospectively enrolled. The patients were randomly assigned to a training cohort (n = 155) and a testing cohort (n = 67) in a ratio of 7:3. A total of 2288 candidate radiomic features were extracted from the volume region of interest - the left proximal femur of the abdominal CT scans. The most valuable radiomic features were selected using minimum-Redundancy Maximum-Relevancy and the least absolute shrinkage and selection operator to construct the radiomics model. The predictive performance was assessed with receiver operating characteristic curve.

RESULTS

13 features were chosen to establish the radiomics model. The radiomics model using logistic regression displayed excellent prediction performance in distinguishing normal bone mass and abnormal bone mass, with the area under the curve (AUC), accuracy, sensitivity and specificity of 0.917 (95% CI, 0.867-0.967), 0.826, 0.935 and 0.780 in the training cohort. The testing cohort indicated a better performance with AUC, accuracy, sensitivity and specificity of 0.963 (95% CI, 0.919-0.999), 0.851, 0.923 and 0.889.

CONCLUSION

The radiomics model based on proximal femur of abdominal CT scans had a high predictive performance to identify abnormal bone mass in femur, which can be used as a tool for opportunistic osteoporosis screening.

摘要

背景与目的

评估基于腹部 CT 扫描股骨近端的机器学习分析在筛查股骨骨量异常中的性能。

材料与方法

回顾性纳入 222 例年龄 50 岁或以上且在 14 天内接受腹部 CT 和双能 X 线吸收法扫描的患者。患者以 7:3 的比例随机分配至训练队列(n=155)和测试队列(n=67)。从腹部 CT 扫描的左股骨近端容积感兴趣区提取 2288 个候选放射组学特征。采用最小冗余最大相关性和最小绝对收缩和选择算子选择最有价值的放射组学特征,构建放射组学模型。采用受试者工作特征曲线评估预测性能。

结果

选择了 13 个特征来建立放射组学模型。使用逻辑回归的放射组学模型在区分正常骨量和异常骨量方面表现出优异的预测性能,在训练队列中的曲线下面积(AUC)、准确性、敏感度和特异度分别为 0.917(95%CI,0.867-0.967)、0.826、0.935 和 0.780。测试队列的 AUC、准确性、敏感度和特异度分别为 0.963(95%CI,0.919-0.999)、0.851、0.923 和 0.889,表现出更好的性能。

结论

基于腹部 CT 扫描股骨近端的放射组学模型具有较高的预测性能,可用于识别股骨骨量异常,可作为机会性骨质疏松症筛查的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验