Suppr超能文献

机器学习算法可区分与背痛相关网页的离散数字情感指纹。

Machine learning algorithms distinguish discrete digital emotional fingerprints for web pages related to back pain.

机构信息

Humanitas Gradenigo Hospital, Turin, Italy.

Imparamare Ong, Asti, Italy.

出版信息

Sci Rep. 2023 Mar 21;13(1):4654. doi: 10.1038/s41598-023-31741-2.

Abstract

Back pain is the leading cause of disability worldwide. Its emergence relates not only to the musculoskeletal degeneration biological substrate but also to psychosocial factors; emotional components play a pivotal role. In modern society, people are significantly informed by the Internet; in turn, they contribute social validation to a "successful" digital information subset in a dynamic interplay. The Affective component of medical pages has not been previously investigated, a significant gap in knowledge since they represent a critical biopsychosocial feature. We tested the hypothesis that successful pages related to spine pathology embed a consistent emotional pattern, allowing discrimination from a control group. The pool of web pages related to spine or hip/knee pathology was automatically selected by relevance and popularity and submitted to automated sentiment analysis to generate emotional patterns. Machine Learning (ML) algorithms were trained to predict page original topics from patterns with binary classification. ML showed high discrimination accuracy; disgust emerged as a discriminating emotion. The findings suggest that the digital affective "successful content" (collective consciousness) integrates patients' biopsychosocial ecosystem, with potential implications for the emergence of chronic pain, and the endorsement of health-relevant specific behaviors. Awareness of such effects raises practical and ethical issues for health information providers.

摘要

背痛是全球范围内导致残疾的主要原因。它的出现不仅与肌肉骨骼退行性变的生物学基础有关,还与心理社会因素有关;情绪因素起着关键作用。在现代社会,人们通过互联网获得了大量信息;反过来,他们也为一个动态互动中的“成功”数字信息子集提供了社会认可。医学网页的情感成分以前没有被研究过,这是知识的一个重大空白,因为它们代表了一个关键的生物心理社会特征。我们检验了这样一个假设,即与脊柱病理相关的成功页面嵌入了一致的情感模式,可以与对照组区分开来。与脊柱或髋/膝病理相关的网页通过相关性和受欢迎程度自动选择,并提交给自动情感分析,以生成情感模式。机器学习 (ML) 算法被训练来通过二进制分类从模式中预测页面原始主题。ML 显示出了很高的区分准确性;厌恶情绪是一种具有区分性的情绪。研究结果表明,数字情感“成功内容”(集体意识)整合了患者的生物心理社会生态系统,这可能对慢性疼痛的出现和与健康相关的特定行为的认可产生影响。对这些影响的认识给健康信息提供者带来了实际和伦理问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7be/10030566/ed29be65889a/41598_2023_31741_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验