Suppr超能文献

基于实时深度神经网络的 X 射线图像中用于粒子束治疗的肠气自动分割。

Real-time deep neural network-based automatic bowel gas segmentation on X-ray images for particle beam treatment.

机构信息

Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage- ku, 263-8555, Chiba, Japan.

Graduate School of Science and Engineering, Chiba University, Inage-ku, 263-8522, Chiba, Japan.

出版信息

Phys Eng Sci Med. 2023 Jun;46(2):659-668. doi: 10.1007/s13246-023-01240-9. Epub 2023 Mar 21.

Abstract

Since particle beam distribution is vulnerable to change in bowel gas because of its low density, we developed a deep neural network (DNN) for bowel gas segmentation on X-ray images. We used 6688 image datasets from 209 cases as training data, 736 image datasets from 23 cases as validation data and 102 image datasets from 51 cases as test data (total 283 cases). For the training data, we prepared three types of digitally reconstructed radiographic (DRR) images (all-density, bone and gas) by projecting the treatment planning CT image data. However, the real X-ray images acquired in the treatment room showed low contrast that interfered with manual delineation of bowel gas. Therefore, we used synthetic X-ray images converted from DRR images in addition to real X-ray images.We evaluated DNN segmentation accuracy for the synthetic X-ray images using Intersection over Union, recall, precision, and the Dice coefficient, which measured 0.708 ± 0.208, 0.832 ± 0.170, 0.799 ± 0.191, and 0.807 ± 0.178, respectively. The evaluation metrics for the real X-images were less accurate than those for the synthetic X-ray images (0.408 ± 0237, 0.685 ± 0.326, 0.490 ± 0272, and 0.534 ± 0.271, respectively). Computation time was 29.7 ± 1.3 ms/image. Our DNN appears useful in increasing treatment accuracy in particle beam therapy.

摘要

由于其低密度,粒子束分布容易受到肠道气体变化的影响,因此我们开发了一种用于 X 射线图像中肠道气体分割的深度神经网络(DNN)。我们使用 209 例患者的 6688 个图像数据集作为训练数据,23 例患者的 736 个图像数据集作为验证数据,51 例患者的 102 个图像数据集作为测试数据(共 283 例患者)。对于训练数据,我们通过投影治疗计划 CT 图像数据准备了三种类型的数字重建射线照相术(DRR)图像(全密度、骨密度和气体密度)。然而,在治疗室中获取的真实 X 射线图像对比度较低,这干扰了肠道气体的手动勾画。因此,我们除了使用真实 X 射线图像之外,还使用从 DRR 图像转换而来的合成 X 射线图像。我们使用交并比、召回率、精确率和 Dice 系数评估了 DNN 对合成 X 射线图像的分割精度,分别为 0.708±0.208、0.832±0.170、0.799±0.191 和 0.807±0.178。真实 X 图像的评估指标不如合成 X 射线图像准确(分别为 0.408±0237、0.685±0.326、0.490±0272 和 0.534±0.271)。计算时间为 29.7±1.3ms/图像。我们的 DNN 似乎有助于提高粒子束治疗的治疗精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验