跨模态深度学习:仅从标注的CT数据对MRI数据进行轮廓提取。
Cross-modality deep learning: Contouring of MRI data from annotated CT data only.
作者信息
Kieselmann Jennifer P, Fuller Clifton D, Gurney-Champion Oliver J, Oelfke Uwe
机构信息
Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK.
Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030, USA.
出版信息
Med Phys. 2021 Apr;48(4):1673-1684. doi: 10.1002/mp.14619. Epub 2020 Dec 13.
PURPOSE
Online adaptive radiotherapy would greatly benefit from the development of reliable auto-segmentation algorithms for organs-at-risk and radiation targets. Current practice of manual segmentation is subjective and time-consuming. While deep learning-based algorithms offer ample opportunities to solve this problem, they typically require large datasets. However, medical imaging data are generally sparse, in particular annotated MR images for radiotherapy. In this study, we developed a method to exploit the wealth of publicly available, annotated CT images to generate synthetic MR images, which could then be used to train a convolutional neural network (CNN) to segment the parotid glands on MR images of head and neck cancer patients.
METHODS
Imaging data comprised 202 annotated CT and 27 annotated MR images. The unpaired CT and MR images were fed into a 2D CycleGAN network to generate synthetic MR images from the CT images. Annotations of axial slices of the synthetic images were generated by propagating the CT contours. These were then used to train a 2D CNN. We assessed the segmentation accuracy using the real MR images as test dataset. The accuracy was quantified with the 3D Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean surface distance (MSD) between manual and auto-generated contours. We benchmarked the approach by a comparison to the interobserver variation determined for the real MR images, as well as to the accuracy when training the 2D CNN to segment the CT images.
RESULTS
The determined accuracy (DSC: 0.77±0.07, HD: 18.04±12.59mm, MSD: 2.51±1.47mm) was close to the interobserver variation (DSC: 0.84±0.06, HD: 10.85±5.74mm, MSD: 1.50±0.77mm), as well as to the accuracy when training the 2D CNN to segment the CT images (DSC: 0.81±0.07, HD: 13.00±7.61mm, MSD: 1.87±0.84mm).
CONCLUSIONS
The introduced cross-modality learning technique can be of great value for segmentation problems with sparse training data. We anticipate using this method with any nonannotated MRI dataset to generate annotated synthetic MR images of the same type via image style transfer from annotated CT images. Furthermore, as this technique allows for fast adaptation of annotated datasets from one imaging modality to another, it could prove useful for translating between large varieties of MRI contrasts due to differences in imaging protocols within and between institutions.
目的
在线自适应放疗将极大地受益于针对危及器官和放射靶区开发可靠的自动分割算法。当前手动分割的做法主观且耗时。虽然基于深度学习的算法为解决此问题提供了大量机会,但它们通常需要大型数据集。然而,医学影像数据通常很稀疏,尤其是用于放疗的标注磁共振(MR)图像。在本研究中,我们开发了一种方法,利用大量公开可用的标注计算机断层扫描(CT)图像来生成合成MR图像,然后可将其用于训练卷积神经网络(CNN),以在头颈癌患者的MR图像上分割腮腺。
方法
影像数据包括202幅标注的CT图像和27幅标注的MR图像。将未配对的CT图像和MR图像输入二维循环生成对抗网络(CycleGAN),从CT图像生成合成MR图像。通过传播CT轮廓生成合成图像轴向切片的标注。然后将这些标注用于训练二维CNN。我们使用真实MR图像作为测试数据集评估分割准确性。准确性通过手动和自动生成轮廓之间的三维骰子相似系数(DSC)、豪斯多夫距离(HD)和平均表面距离(MSD)进行量化。我们通过与针对真实MR图像确定的观察者间差异以及训练二维CNN分割CT图像时的准确性进行比较,来对该方法进行基准测试。
结果
确定的准确性(DSC:0.77±0.07,HD:18.04±12.59mm,MSD:2.51±1.47mm)接近观察者间差异(DSC:0.84±0.06,HD:10.85±5.74mm,MSD:1.50±0.77mm),也接近训练二维CNN分割CT图像时的准确性(DSC:0.81±0.07,HD:13.00±7.61mm,MSD:1.87±0.84mm)。
结论
引入的跨模态学习技术对于训练数据稀疏的分割问题可能具有重要价值。我们期望将此方法用于任何未标注的MRI数据集,通过从标注的CT图像进行图像风格迁移来生成相同类型的标注合成MR图像。此外,由于该技术允许将标注数据集从一种成像模态快速适配到另一种成像模态,鉴于机构内部和机构之间成像协议的差异,它可能有助于在多种MRI对比度之间进行转换。