Suppr超能文献

联合乳腺癌风险预测模型

Combining Breast Cancer Risk Prediction Models.

作者信息

Guan Zoe, Huang Theodore, McCarthy Anne Marie, Hughes Kevin, Semine Alan, Uno Hajime, Trippa Lorenzo, Parmigiani Giovanni, Braun Danielle

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA.

Vertex Pharmaceuticals, Boston, MA 02210, USA.

出版信息

Cancers (Basel). 2023 Feb 8;15(4):1090. doi: 10.3390/cancers15041090.

Abstract

Accurate risk stratification is key to reducing cancer morbidity through targeted screening and preventative interventions. Multiple breast cancer risk prediction models are used in clinical practice, and often provide a range of different predictions for the same patient. Integrating information from different models may improve the accuracy of predictions, which would be valuable for both clinicians and patients. BRCAPRO is a widely used model that predicts breast cancer risk based on detailed family history information. A major limitation of this model is that it does not consider non-genetic risk factors. To address this limitation, we expand BRCAPRO by combining it with another popular existing model, BCRAT (i.e., Gail), which uses a largely complementary set of risk factors, most of them non-genetic. We consider two approaches for combining BRCAPRO and BCRAT: (1) modifying the penetrance (age-specific probability of developing cancer given genotype) functions in BRCAPRO using relative hazard estimates from BCRAT, and (2) training an ensemble model that takes BRCAPRO and BCRAT predictions as input. Using both simulated data and data from Newton-Wellesley Hospital and the Cancer Genetics Network, we show that the combination models are able to achieve performance gains over both BRCAPRO and BCRAT. In the Cancer Genetics Network cohort, we show that the proposed BRCAPRO + BCRAT penetrance modification model performs comparably to IBIS, an existing model that combines detailed family history with non-genetic risk factors.

摘要

准确的风险分层是通过针对性筛查和预防性干预降低癌症发病率的关键。临床实践中使用了多种乳腺癌风险预测模型,并且常常对同一患者给出一系列不同的预测结果。整合来自不同模型的信息可能会提高预测的准确性,这对临床医生和患者都将是有价值的。BRCAPRO是一种广泛使用的模型,它基于详细的家族病史信息来预测乳腺癌风险。该模型的一个主要局限性在于它没有考虑非遗传风险因素。为了解决这一局限性,我们通过将BRCAPRO与另一种现有的流行模型BCRAT(即盖尔模型)相结合来对其进行扩展,BCRAT使用的是一组在很大程度上互补的风险因素,其中大多数是非遗传因素。我们考虑了两种将BRCAPRO和BCRAT相结合的方法:(1)使用来自BCRAT的相对风险估计来修改BRCAPRO中的外显率(给定基因型下特定年龄患癌的概率)函数,以及(2)训练一个以BRCAPRO和BCRAT的预测结果作为输入的集成模型。使用模拟数据以及来自牛顿 - 韦尔斯利医院和癌症遗传网络的数据,我们表明组合模型在性能上优于BRCAPRO和BCRAT。在癌症遗传网络队列中,我们表明所提出的BRCAPRO + BCRAT外显率修改模型的表现与IBIS相当,IBIS是一种将详细家族病史与非遗传风险因素相结合的现有模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e270/9953824/ac4d4fdaa528/cancers-15-01090-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验