Suppr超能文献

Signifinder能够在批量、单细胞和空间转录组数据中识别肿瘤细胞状态和癌症表达特征。

signifinder enables the identification of tumor cell states and cancer expression signatures in bulk, single-cell and spatial transcriptomic data.

作者信息

Pirrotta Stefania, Masatti Laura, Corrà Anna, Pedrini Fabiola, Esposito Giovanni, Martini Paolo, Risso Davide, Romualdi Chiara, Calura Enrica

机构信息

Department of Biology, University of Padua, Padua, Italy.

Immunology and Molecular Oncology Diagnostic Unit of The Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.

出版信息

bioRxiv. 2023 Mar 10:2023.03.07.530940. doi: 10.1101/2023.03.07.530940.

Abstract

Over the last decade, many studies and some clinical trials have proposed gene expression signatures as a valuable tool for understanding cancer mechanisms, defining subtypes, monitoring patient prognosis, and therapy efficacy. However, technical and biological concerns about reproducibility have been raised. Technical reproducibility is a major concern: we currently lack a computational implementation of the proposed signatures, which would provide detailed signature definition and assure reproducibility, dissemination, and usability of the classifier. Another concern regards intratumor heterogeneity, which has never been addressed when studying these types of biomarkers using bulk transcriptomics. With the aim of providing a tool able to improve the reproducibility and usability of gene expression signatures, we propose , an R package that provides the infrastructure to collect, implement, and compare expression-based signatures from cancer literature. The included signatures cover a wide range of biological processes from metabolism and programmed cell death, to morphological changes, such as quantification of epithelial or mesenchymal-like status. Collected signatures can score tumor cell characteristics, such as the predicted response to therapy or the survival association, and can quantify microenvironmental information, including hypoxia and immune response activity. has been used to characterize tumor samples and to investigate intra-tumor heterogeneity, extending its application to single-cell and spatial transcriptomic data. Through these higher-resolution technologies, it has become increasingly apparent that the single-sample score assessment obtained by transcriptional signatures is conditioned by the phenotypic and genetic intratumor heterogeneity of tumor masses. Since the characteristics of the most abundant cell type or clone might not necessarily predict the properties of mixed populations, signature prediction efficacy is lowered, thus impeding effective clinical diagnostics. Through , we offer general principles for interpreting and comparing transcriptional signatures, as well as suggestions for additional signatures that would allow for more complete and robust data inferences. We consider a useful tool to pave the way for reproducibility and comparison of transcriptional signatures in oncology.

摘要

在过去十年中,许多研究和一些临床试验都提出基因表达特征可作为理解癌症机制、定义亚型、监测患者预后和治疗效果的有价值工具。然而,关于可重复性的技术和生物学问题已经出现。技术可重复性是一个主要问题:我们目前缺乏对所提出特征的计算实现,而这将提供详细的特征定义,并确保分类器的可重复性、传播性和可用性。另一个问题涉及肿瘤内异质性,在使用批量转录组学研究这类生物标志物时,这一问题从未得到解决。为了提供一个能够提高基因表达特征的可重复性和可用性的工具,我们提出了 ,这是一个R包,它提供了从癌症文献中收集、实现和比较基于表达的特征的基础设施。所包含的特征涵盖了广泛的生物学过程,从代谢和程序性细胞死亡到形态变化,如上皮样或间充质样状态的量化。收集到的特征可以对肿瘤细胞特征进行评分,如预测的治疗反应或生存关联,并可以量化微环境信息,包括缺氧和免疫反应活性。 已被用于表征肿瘤样本和研究肿瘤内异质性,并将其应用扩展到单细胞和空间转录组数据。通过这些更高分辨率的技术,越来越明显的是,转录特征获得的单样本评分评估受肿瘤块的表型和遗传肿瘤内异质性的影响。由于最丰富的细胞类型或克隆的特征不一定能预测混合群体的特性,特征预测效果会降低,从而阻碍有效的临床诊断。通过 ,我们提供了解释和比较转录特征的一般原则,以及关于其他特征的建议,这些特征将允许进行更完整和可靠的数据推断。我们认为 是一个有用的工具,可为肿瘤学中转录特征的可重复性和比较铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8965/10028855/afd6f617ff0e/nihpp-2023.03.07.530940v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验