Pirrotta Stefania, Masatti Laura, Bortolato Anna, Corrà Anna, Pedrini Fabiola, Aere Martina, Esposito Giovanni, Martini Paolo, Risso Davide, Romualdi Chiara, Calura Enrica
Department of Biology, University of Padua, Padua 35121, Italy.
Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua 35127, Italy.
NAR Genom Bioinform. 2024 Oct 3;6(4):lqae138. doi: 10.1093/nargab/lqae138. eCollection 2024 Sep.
Understanding cancer mechanisms, defining subtypes, predicting prognosis and assessing therapy efficacy are crucial aspects of cancer research. Gene-expression signatures derived from bulk gene expression data have played a significant role in these endeavors over the past decade. However, recent advancements in high-resolution transcriptomic technologies, such as single-cell RNA sequencing and spatial transcriptomics, have revealed the complex cellular heterogeneity within tumors, necessitating the development of computational tools to characterize tumor mass heterogeneity accurately. Thus we implemented signifinder, a novel R Bioconductor package designed to streamline the collection and use of cancer transcriptional signatures across bulk, single-cell, and spatial transcriptomics data. Leveraging publicly available signatures curated by signifinder, users can assess a wide range of tumor characteristics, including hallmark processes, therapy responses, and tumor microenvironment peculiarities. Through three case studies, we demonstrate the utility of transcriptional signatures in bulk, single-cell, and spatial transcriptomic data analyses, providing insights into cell-resolution transcriptional signatures in oncology. Signifinder represents a significant advancement in cancer transcriptomic data analysis, offering a comprehensive framework for interpreting high-resolution data and addressing tumor complexity.
了解癌症机制、定义亚型、预测预后以及评估治疗效果是癌症研究的关键方面。在过去十年中,从大量基因表达数据中获得的基因表达特征在这些工作中发挥了重要作用。然而,诸如单细胞RNA测序和空间转录组学等高分辨率转录组技术的最新进展揭示了肿瘤内复杂的细胞异质性,因此需要开发计算工具来准确表征肿瘤块的异质性。因此,我们实现了Signifinder,这是一个新颖的R语言生物导体包,旨在简化跨大量、单细胞和空间转录组学数据的癌症转录特征的收集和使用。利用Signifinder精心策划的公开可用特征,用户可以评估广泛的肿瘤特征,包括标志性过程、治疗反应和肿瘤微环境特性。通过三个案例研究,我们展示了转录特征在大量、单细胞和空间转录组数据分析中的效用,为肿瘤学中细胞分辨率的转录特征提供了见解。Signifinder代表了癌症转录组数据分析的重大进展,为解释高分辨率数据和解决肿瘤复杂性提供了一个全面的框架。