Suppr超能文献

灵敏的无聚类差异表达检测

Sensitive cluster-free differential expression testing.

作者信息

Missarova Alsu, Dann Emma, Rosen Leah, Satija Rahul, Marioni John

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.

出版信息

bioRxiv. 2023 Mar 10:2023.03.08.531744. doi: 10.1101/2023.03.08.531744.

Abstract

Comparing molecular features, including the identification of genes with differential expression (DE) between conditions, is a powerful approach for characterising disease-specific phenotypes. When testing for DE in single-cell RNA sequencing data, current pipelines first assign cells into discrete clusters (or cell types), followed by testing for differences within each cluster. Consequently, the sensitivity and specificity of DE testing are limited and ultimately dictated by the granularity of the cell type annotation, with discrete clustering being especially suboptimal for continuous trajectories. To overcome these limitations, we present miloDE - a cluster-free framework for differential expression testing. We build on the Milo approach, introduced for differential cell abundance testing, which leverages the graph representation of single-cell data to assign relatively homogenous, 'neighbouring' cells into overlapping neighbourhoods. We address key differences between differential abundance and expression testing at the level of neighbourhood assignment, statistical testing, and multiple testing correction. To illustrate the performance of miloDE we use both simulations and real data, in the latter case identifying a transient haemogenic endothelia-like state in chimeric mouse embryos lacking Tal1 as well as uncovering distinct transcriptional programs that characterise changes in macrophages in patients with Idiopathic Pulmonary Fibrosis. miloDE is available as an open-source R package at https://github.com/MarioniLab/miloDE.

摘要

比较分子特征,包括识别不同条件之间差异表达(DE)的基因,是表征疾病特异性表型的有力方法。在单细胞RNA测序数据中测试DE时,当前的流程首先将细胞分配到离散的簇(或细胞类型)中,然后测试每个簇内的差异。因此,DE测试的敏感性和特异性受到限制,最终由细胞类型注释的粒度决定,离散聚类对于连续轨迹尤其不理想。为了克服这些限制,我们提出了miloDE——一种用于差异表达测试的无簇框架。我们基于为差异细胞丰度测试引入的Milo方法,该方法利用单细胞数据的图表示将相对同质的“相邻”细胞分配到重叠的邻域中。我们在邻域分配、统计测试和多重测试校正层面解决了差异丰度测试和表达测试之间的关键差异。为了说明miloDE的性能,我们使用了模拟和真实数据,在后一种情况下,我们在缺乏Tal1的嵌合小鼠胚胎中识别出一种短暂的造血内皮样状态,并揭示了特发性肺纤维化患者巨噬细胞变化的不同转录程序。miloDE可作为开源R包在https://github.com/MarioniLab/miloDE上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42bc/10028920/df443eab9cd8/nihpp-2023.03.08.531744v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验