Suppr超能文献

基于注意力的多实例学习从十种不同肿瘤类型的常规组织学直接预测同源重组缺陷:一项开发与验证研究

Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study.

作者信息

Loeffler Chiara Maria Lavinia, El Nahhas Omar S M, Muti Hannah Sophie, Seibel Tobias, Cifci Didem, van Treeck Marko, Gustav Marco, Carrero Zunamys I, Gaisa Nadine T, Lehmann Kjong-Van, Leary Alexandra, Selenica Pier, Reis-Filho Jorge S, Bruechle Nadina Ortiz, Kather Jakob Nikolas

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.

出版信息

medRxiv. 2023 Mar 10:2023.03.08.23286975. doi: 10.1101/2023.03.08.23286975.

Abstract

BACKGROUND

Homologous Recombination Deficiency (HRD) is a pan-cancer predictive biomarker that identifies patients who benefit from therapy with PARP inhibitors (PARPi). However, testing for HRD is highly complex. Here, we investigated whether Deep Learning can predict HRD status solely based on routine Hematoxylin & Eosin (H&E) histology images in ten cancer types.

METHODS

We developed a fully automated deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. A combined genomic scar HRD score, which integrated loss of heterozygosity (LOH), telomeric allelic imbalance (TAI) and large-scale state transitions (LST) was calculated from whole genome sequencing data for n=4,565 patients from two independent cohorts. The primary statistical endpoint was the Area Under the Receiver Operating Characteristic curve (AUROC) for the prediction of genomic scar HRD with a clinically used cutoff value.

RESULTS

We found that HRD status is predictable in tumors of the endometrium, pancreas and lung, reaching cross-validated AUROCs of 0.79, 0.58 and 0.66. Predictions generalized well to an external cohort with AUROCs of 0.93, 0.81 and 0.73 respectively. Additionally, an HRD classifier trained on breast cancer yielded an AUROC of 0.78 in internal validation and was able to predict HRD in endometrial, prostate and pancreatic cancer with AUROCs of 0.87, 0.84 and 0.67 indicating a shared HRD-like phenotype is across tumor entities.

CONCLUSION

In this study, we show that HRD is directly predictable from H&E slides using attMIL within and across ten different tumor types.

摘要

背景

同源重组缺陷(HRD)是一种泛癌预测生物标志物,可识别从聚(ADP-核糖)聚合酶抑制剂(PARPi)治疗中获益的患者。然而,HRD检测非常复杂。在此,我们研究了深度学习是否能够仅基于十种癌症类型的常规苏木精和伊红(H&E)组织学图像预测HRD状态。

方法

我们开发了一种具有注意力加权多实例学习(attMIL)的全自动深度学习管道,以从组织学图像预测HRD状态。从两个独立队列的n = 4565名患者的全基因组测序数据中计算出一个综合基因组疤痕HRD评分,该评分整合了杂合性缺失(LOH)、端粒等位基因不平衡(TAI)和大规模状态转换(LST)。主要统计终点是使用临床应用的临界值预测基因组疤痕HRD的受试者操作特征曲线下面积(AUROC)。

结果

我们发现子宫内膜癌、胰腺癌和肺癌的肿瘤中HRD状态是可预测的,交叉验证的AUROC分别为0.79、0.58和0.66。预测在外部队列中泛化良好,AUROC分别为0.93、0.81和0.73。此外,在乳腺癌上训练的HRD分类器在内部验证中的AUROC为0.78,并且能够以0.87、0.84和0.67的AUROC预测子宫内膜癌、前列腺癌和胰腺癌中的HRD,表明不同肿瘤实体之间存在共同的HRD样表型。

结论

在本研究中,我们表明使用attMIL可直接从H&E切片预测十种不同肿瘤类型内和之间的HRD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2526/10029072/e9c590e6a2e3/nihpp-2023.03.08.23286975v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验