Suppr超能文献

基于注意力的多实例学习在 9 种不同肿瘤类型中从常规组织学预测同源重组缺陷。

Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types.

机构信息

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.

出版信息

BMC Biol. 2024 Oct 8;22(1):225. doi: 10.1186/s12915-024-02022-9.

Abstract

BACKGROUND

Homologous recombination deficiency (HRD) is recognized as a pan-cancer predictive biomarker that potentially indicates who could benefit from treatment with PARP inhibitors (PARPi). Despite its clinical significance, HRD testing is highly complex. Here, we investigated in a proof-of-concept study whether Deep Learning (DL) can predict HRD status solely based on routine hematoxylin & eosin (H&E) histology images across nine different cancer types.

METHODS

We developed a deep learning pipeline with attention-weighted multiple instance learning (attMIL) to predict HRD status from histology images. As part of our approach, we calculated a genomic scar HRD score by combining loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST) from whole genome sequencing (WGS) data of n = 5209 patients across two independent cohorts. The model's effectiveness was evaluated using the area under the receiver operating characteristic curve (AUROC), focusing on its accuracy in predicting genomic HRD against a clinically recognized cutoff value.

RESULTS

Our study demonstrated the predictability of genomic HRD status in endometrial, pancreatic, and lung cancers reaching cross-validated AUROCs of 0.79, 0.58, and 0.66, respectively. These predictions generalized well to an external cohort, with AUROCs of 0.93, 0.81, and 0.73. Moreover, a breast cancer-trained image-based HRD classifier yielded an AUROC of 0.78 in the internal validation cohort and was able to predict HRD in endometrial, prostate, and pancreatic cancer with AUROCs of 0.87, 0.84, and 0.67, indicating that a shared HRD-like phenotype occurs across these tumor entities.

CONCLUSIONS

This study establishes that HRD can be directly predicted from H&E slides using attMIL, demonstrating its applicability across nine different tumor types.

摘要

背景

同源重组缺陷(HRD)被认为是一种泛癌预测生物标志物,可能表明谁将受益于 PARP 抑制剂(PARPi)的治疗。尽管其具有临床意义,但 HRD 检测非常复杂。在这里,我们通过一项概念验证研究调查了深度学习(DL)是否仅基于常规苏木精和伊红(H&E)组织学图像就能预测 9 种不同癌症类型的 HRD 状态。

方法

我们开发了一个带有注意力加权多实例学习(attMIL)的深度学习管道,用于从组织学图像预测 HRD 状态。作为我们方法的一部分,我们通过结合来自两个独立队列的 n=5209 名患者的全基因组测序(WGS)数据中的杂合性丢失(LOH)、端粒等位基因不平衡(TAI)和大规模状态转换(LST),计算了基因组疤痕 HRD 评分。该模型的有效性通过接收者操作特征曲线下的面积(AUROC)进行评估,重点关注其在预测基因组 HRD 相对于临床认可的截止值的准确性。

结果

我们的研究表明,子宫内膜癌、胰腺癌和肺癌的基因组 HRD 状态具有可预测性,交叉验证的 AUROC 分别为 0.79、0.58 和 0.66。这些预测在外部队列中得到了很好的概括,AUROC 分别为 0.93、0.81 和 0.73。此外,基于乳腺癌训练的图像 HRD 分类器在内部验证队列中的 AUROC 为 0.78,并且能够预测子宫内膜癌、前列腺癌和胰腺癌的 HRD,AUROC 分别为 0.87、0.84 和 0.67,表明这些肿瘤实体中存在共享的 HRD 样表型。

结论

本研究建立了 HRD 可以使用 attMIL 直接从 H&E 幻灯片中预测,证明了其在 9 种不同肿瘤类型中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b0/11462727/db1d70f3dd6b/12915_2024_2022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验