Suppr超能文献

基于注意力的多实例学习与自监督,从组织学全切片图像预测结直肠癌的微卫星不稳定性。

Attention-based multiple instance learning with self-supervision to predict microsatellite instability in colorectal cancer from histology whole-slide images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3068-3071. doi: 10.1109/EMBC48229.2022.9871553.

Abstract

Microsatellite instability (MSI) is a clinically important characteristic of colorectal cancer. Standard diagnosis of MSI is performed via genetic analyses, however these tests are not always included in routine care. Histopathology whole-slide images (WSIs) are the gold-standard for colorectal cancer diagnosis and are routinely collected. This study develops a model to predict MSI directly from WSIs. Making use of both weakly- and self-supervised deep learning techniques, the proposed model shows improved performance over conventional deep learning models. Additionally, the proposed framework allows for visual interpretation of model decisions. These results are validated in internal and external testing datasets.

摘要

微卫星不稳定性 (MSI) 是结直肠癌的一个重要临床特征。MSI 的标准诊断是通过基因分析进行的,但这些测试并不总是包含在常规护理中。组织病理学全切片图像 (WSI) 是结直肠癌诊断的金标准,并且通常会被收集。本研究开发了一种直接从 WSI 预测 MSI 的模型。该模型利用弱监督和自我监督的深度学习技术,其性能优于传统的深度学习模型。此外,所提出的框架允许对模型决策进行可视化解释。这些结果在内部和外部测试数据集上得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验