Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3068-3071. doi: 10.1109/EMBC48229.2022.9871553.
Microsatellite instability (MSI) is a clinically important characteristic of colorectal cancer. Standard diagnosis of MSI is performed via genetic analyses, however these tests are not always included in routine care. Histopathology whole-slide images (WSIs) are the gold-standard for colorectal cancer diagnosis and are routinely collected. This study develops a model to predict MSI directly from WSIs. Making use of both weakly- and self-supervised deep learning techniques, the proposed model shows improved performance over conventional deep learning models. Additionally, the proposed framework allows for visual interpretation of model decisions. These results are validated in internal and external testing datasets.
微卫星不稳定性 (MSI) 是结直肠癌的一个重要临床特征。MSI 的标准诊断是通过基因分析进行的,但这些测试并不总是包含在常规护理中。组织病理学全切片图像 (WSI) 是结直肠癌诊断的金标准,并且通常会被收集。本研究开发了一种直接从 WSI 预测 MSI 的模型。该模型利用弱监督和自我监督的深度学习技术,其性能优于传统的深度学习模型。此外,所提出的框架允许对模型决策进行可视化解释。这些结果在内部和外部测试数据集上得到了验证。