Jung Kanghoon, Chang Minhyeok, Steinecke André, Berke Benjamin, Choi Youngjin, Oisi Yasuhiro, Fitzpatrick David, Taniguchi Hiroki, Kwon Hyung-Bae
Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA.
bioRxiv. 2023 Mar 10:2023.03.10.531767. doi: 10.1101/2023.03.10.531767.
Neural circuits are reorganized with specificity during learning. Genetically-defined subgroups of inhibitory interneurons are thought to play distinct roles in learning, but heterogeneity within these subgroups has limited our understanding of the scope and nature of their specific contributions to learning. Here we reveal that the chandelier cell (ChC), an interneuron type that specializes in inhibiting the axon-initial segment (AIS) of pyramidal neurons, establishes cortical microcircuits for organizing neural coding through selective axo-axonic synaptic plasticity. We find that organized motor control is mediated by enhanced population coding of direction-tuned premotor neurons, whose tuning is refined through suppression of irrelevant neuronal activity. ChCs are required for learning-dependent refinements via providing selective inhibitory control over pyramidal neurons rather than global suppression. Quantitative analysis on structural plasticity of axo-axonic synapses revealed that ChCs redistributed inhibitory weights to individual pyramidal neurons during learning. These results demonstrate an adaptive logic of the inhibitory circuit motif responsible for organizing distributed neural representations. Thus, ChCs permit efficient cortical computation in a target cell specific manner, which highlights the significance of interneuron diversity.
神经回路在学习过程中会特异性地重新组织。遗传定义的抑制性中间神经元亚群被认为在学习中发挥着不同的作用,但这些亚群内部的异质性限制了我们对它们对学习的具体贡献的范围和性质的理解。在这里,我们揭示了吊灯细胞(ChC),一种专门抑制锥体神经元轴突起始段(AIS)的中间神经元类型,通过选择性轴-轴突突触可塑性建立了用于组织神经编码的皮质微电路。我们发现,有组织的运动控制是由方向调谐的运动前神经元的增强群体编码介导的,其调谐通过抑制不相关的神经元活动而得到优化。ChC通过对锥体神经元提供选择性抑制控制而非全局抑制,来实现依赖学习的优化。对轴-轴突突触结构可塑性的定量分析表明,ChC在学习过程中将抑制权重重新分配给单个锥体神经元。这些结果证明了负责组织分布式神经表征的抑制性电路基序的适应性逻辑。因此,ChC以靶细胞特异性的方式允许高效的皮质计算,这突出了中间神经元多样性的重要性。